
Computer Networks - Summary

Patrick Pletscher

September 13, 2004

1 Introduction

1.1 Overview

Internet standards

RFC Request for comments

IETF Internet engineering Task force

What’s a protocol?

Definition 1 (Protocol) Protocols define format, order of
msgs sent and received among network entities, and actions
taken on msg transmisson, receipt.

Circuit Switching

End-end resources reserved for ”call”. Bandwith link is di-
vided into ”pieces”:

• Frequency division

• Time division

performance is guaranteed, ”piece” can be idle and call setup
is required.

Packet switching

Each end-end data stream divided into packets, this packets
share network resources and each packet uses full link
bandwith.

Good: resource sharing, no call setup
Bad: overhead, congestion control and protocols needed

2 different routing approaches:

• datagram network (destination address determines next
hop)

• virtual circuit network (each packet carries tag, which
determines next hop)

Delay in packet switched networks

• Transmission delay
R: link bandwith (bps)
L: packet length (bits)

tT =
L

R

• Propagation delay
d: length of physical link
s: propagation speed (∼ 2× 108 m/s)

tP =
d

s

• Queuing delay a: average arrival rate (packets per sec-
ond)
Arrival rate λ = L· a (bps)
Service rate µ = R (bps)
Traffic intensity: ρ = λ/µ
if ρ ≥ 1: average delay grows infinitely

WLAN

802.11b: 11 Mbps
802.11a: 54 Mbps

Internet protocol stack

• application (FTP, SMTP)

• transport (TCP, UDP)

• network (IP, routing)

• link (data transfer between neighboring network ele-
ments, ex: PPP, Ethernet)

• physical

ISO/OSI Reference Model

7 layers instead:
Applications, Presentation, Session, Transport, Network,
Data Link, Physical

2 Applications

2.1 Internet transport protocols services

TCP

• connection-oriented: setup required between client,
server

• reliable transport between sending an receiving process

• flow control: sender won’t overwhelm receiver

1

• congestion control: throttle sender when network over-
loaded

• does not provide timing or minimum bandwith guaran-
tees

UDP

• unreliable data transfer

• does not provide connection setup, reliability, flow con-
trol, congestion control, timing or bandwith guarantee

2.2 The Web

HTTP protocol

1. client initiates TCP connection (creates socket) to server,
port 80

2. server accepts TCP connection from client

3. HTTP messages exchanged between browser and Web
server

4. TCP connection closed

⇒ HTTP is ”stateless” (server maintains no information
about past client requests)

Non-persistent vs. persistent connections

Non-persistent:
Used in HTTP/1.0. Server parses request, responds, closes
TCP connection.

Persistent:
Used in HTTP/1.1. On same TCP connection: server parses
request, responds, parses new request,...

HTTP message format: Request

Request = Req_command {Header_lines} crlf
Req_command = "GET" | "POST" | "HEAD"

sp Page Version crlf
Page = string
Version = "HTTP/1.0" | "HTTP/1.1"
Header_lines = string ":" sp string crlf

HTTP message format: Response

Response = Status_line {Header_lines}
Data crlf crlf

Status_line = Version sp Statuscode
Statuscode = integer sp string

Examples of status codes:
Code Meaning
1xx Information
2xx Success
3xx Redirection
4xx Client error
5xx Server error

2.3 FTP

seperate control and data connection

• FTP client contacts FTP server at port 21, specifying
TCP as transport protocol

• two parallel TCP connections opened (control, data)

• FTP server maintains ”state”: current directory, earlier
authentication

2.4 Email

user agent sends email via SMTP to ”his” server. This server
sends the email to the server which is responsable for the
To-Email address (also via SMTP).

SMTP

• uses TCP to reliably transfer email message from client
to server, on port 25

• direct transfer: sending server to receiving server

• three phases of transfer (handshake, transfer of message)

• command/response interaction

• RFC 821

• SMTP uses persistent connections

Mail message format

A mail consists of the following parts:

• header lines (e.g. To:, From:, Subject:), but this are
not SMTP commands, like the header of a letter, whereas
SMTP commands are like the address on the envelope.

• blank line

• body the ”message”, ASCII chars only

MIME

MIME: multimedia mail extension, RFC 2045, 2056. Ad-
ditional lines in message header are used to declare MIME
content type.

[...]
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=98766789

--98766789
Content-Transfer-Encoding: quoted-printable
Content-Type: text/plain

ASCII-Message
--98766789
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data ...
... base64 encoded data
--98766789

2

Mail access protocols

For the retrieval from server you can use: POP, IMAP or
HTTP

2.5 DNS: Domain Name System

A map from names to IP addresses. It is implemented in
hierarchy of many name servers (distributed database).

• local name servers

– each ISP, company has local (default) name server
– host DNS query first goes to local name server

• authoritative name server

– for a host: stores that host’s IP address, name
– can perform name/address translation for that

host’s name

DNS Iterated Query

Contacted server replies with name of server to contact (”I
don’t know this name, but ask this server”). By contrast the
Recursive query puts burden of name resolution on contacted
name server.

DNS resource records

RR format: (name, ttl, class, type, value)

• Type = A

– name is hostname
– value is IP address

• Type = NS

– name is a domain
– value is IP address of authorative name server for

this domain

• Type = CNAME

– name is alias name for some ”canonical” (the real)
name

– value is IP canonical name

• Type = MX

– value is name of mail server associated with name

DNS protocol, messages

identification flags
number of questions number of answer RRs

number of authority RRs number of additional RRs
questions

(variable number of questions)
answers

(variable number of resource records)
authority

(variable number of resource records)
additional information

(variable number of resource records)

In the 16 bit identification field is a number for the query
stored, reply to sender uses same number. The flags field has
the following flags: query or reply, recursion desired, recursion
available, reply is authoritive.

2.6 Socket programming

Definition 2 (Socket) a host-local, application-
created/owned, OS-controlled interface (a ”door”) into
which application process can both send and receive messages
to/from another (remote or local) application process.

TCP client

/*
send line to server and receive
modified line

*/
import java.io.*;
import java.net.*;

class TCPClient {
public static void main(String argv[]) throws
Exception
{
String sentence;
String modifiedSentence;

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader
(System.in));

Socket clientSocket =
new Socket("hostname", 6789);

DataOutputStream outToServer =
new DataOutputStream(clientSocket.
getOutputStream());

BufferedReader inFromServer =
new BufferedReader(new
InputStreamReader(
clientSocket.getInputStream());

sentence = inFromUser.readLine();

outToServer.writeBytes(sentence + ’\n’);

modifiedSentence = inFromServer.readLine();

System.out.println("FROM SERVER: "
+ modifiedSentence);

clientSocket.close;
}

}

TCP server

/*

3

receive a line a send it back, but
uppercase

*/

import java.io.*;
import java.net.*;

class TCPServer {
public static void main(String argv[]) throws
Exception

{
String clientSentence;
String capitilizedSentence;

ServerSocket welcomeSocket =
new ServerSocket(6789);

while(true) {
Socket connectionSocket =
welcomeSocket.accept();
ServerThread thread =
new ServerThread(connectionSocket);
thread.run();

}
}

public class ServerThread extends Thread {

private Socket connectionSocket;

public ServerThread(Socket connectionSocket)
{
this.connectionSocket = connectionSocket;

}

public void run() {
BufferedReader inFromClient =
new BufferedReader(new
InputStreamReader(
connectionSocket.getInputStream()));

DataOutputStream outToClient =
new DataOutputStream(
connectionSocket.getOutputStream());

clientSentence = inFromClient.readLine();

capitalizedSentence =
clientSentence.toUpperCase() + ’\n’;

outToClient.writeBytes(
capitalizedSentence);

}
}

}

UDP client

import java.io.*;

import java.net.*;

class UDPClient {
public static void main(String args[]) throws
Exception
{
BufferedReader inFromUser =
new BufferedReader(new
InputStreamReader(System.in));

DatagramSocket clientSocket =
new DatagramSocket();

InetAddress IPAddress =
InetAddress.getByName("hostname");

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];

String sentence = inFromUser.readLine();

sendData = sentence.getBytes();

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length,
IPAddress, 9876);

clientSocket.send(sendPacket);

DatagramPacket receivePacket =
new DatagramPacket(receiveData,
receiveData.length);

clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.println("FROM SERVER:"
+ modifiedSentence);
clientSocket.close();

}
}

UDP server

import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws
Exception
{
DatagramSocket serverSocket =
new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

4

while(true)
{

DatgramPacket rececivePacket =
new DatagramPacket(receiveData,
receiveData.length);

serverSocket.receive(receivePacket);

String sentence =
new String(receivePacket.getData());

InetAddress IPAddress =
receivePacket.getAddress();

int port = receivePacket.getPort();

String capitalizedSentence =
sentence.toUpperCase();

sendData =
capitalizedSentence.getBytes();

DatagramPacket sendPacket =
new DatagramPacket(sendData,
sendData.length, IPAddress,
port);

serverSocket.send(sendPacket);
}

}
}

3 Transport

3.1 Multiplexing/Demultiplexing

Definition 3 (Demultiplexing) Delivering received seg-
ments to correct application layer processes.

Definition 4 (Multiplexing) Gathering data from multi-
ple application processes, enveloping data with header (later
used for demultiplexing).

multiplexing/demultiplexing is based on sender, receiver port
numbers, IP addresses.

3.2 UDP: User Datagram Protocol

UDP Segment Structure

Header fields are 16 bits.

0 7 8 15 16 23 24 31
+--------+--------+--------+--------+
| Source | Destination |
| Port | Port |
+--------+--------+--------+--------+
| | |
| Length | Checksum |
+--------+--------+--------+--------+
|
| data octets ...
+---------------- ...

length, in bytes of UDP segment, including header. The
checksum is calculated by adding the segment contents,
whereas treating segment contents as sequence of 16-bit in-
tegers. If there is a carry, forget the carry and add 1 to the
result.

105C8 → 05C9

After that the 1’s complement of it (e.g. 110 ⇒ 001) is calcu-
lated and the result is saved in the UDP checksum field. To
detect errors the receiver can calculate the sum by adding all
16-bit integers (including the checksum field). If the result is
11 . . . 1 then no errors are detected, otherwise there occured
an error.

3.3 Reliable data transfer

[TODO]

stop-and-wait operation

send one packet and wait until ACK’ed.

Utilization U =
L/R

RTT + L/R

RTT: Round trip time (time to receiver and back)

Pipelined protocols

Pipeling: sender allows multiple, ”in-flight”, yet-to-be-ack’ed
packets. So the range of seq numbers must be increased and
buffering at sender and/or receiver is required.

There are two generic forms of pipelined protocols: Go-Back-
N and Selective Repeat.

Go-Back-N

ACKs all packets up to and including sequence number n (=
cumulative ACK).

• Sender

– ”Window” of up to N consecutive unack’ed packets
allowed

– timer for each in-flight packet

– timeout(n): retransmit packet n and all higher
seq# packets in window

• Receiver

– ACK-only: always send ACK for correctly-received
pkt with highest in-order sequence number, this
may generate duplicate ACKs.

– out-of-order packet are discard (no receiver buffer-
ing) and packet with highest in-order sequence num-
ber is re-ACK’ed.

5

Selective Repeat

Sender

• Get data from layer above: If next available sequence
number in window, send packet.

• timeout(n): resend packet n, restart timer.

• ACK(n) in [sendbase, sendbase + N]: mark packet n as
received. If n smallest unACKed pkt, advance window
base to next unACKed sequence number.

Receiver

• pkt n in [rcvbase, rcvbase+N −1]: send ACK(n), if it is
out of order: buffer, otherwise: deliver (also buffered in-
order pkt) and advance window to next not-yet-received
packet.

• pkt n in [rcvbase-N, rcvbase-1]: ACK(n)

• otherwise: ignore

3.4 TCP

Is pipelined (send & receive buffers).

TCP segment structure

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Source Port | Destination Port |
+-+
| Sequence Number |
+-+
| Acknowledgment Number |
+-+
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Rcvr Window
		G	K	H	T	N	N	
+-+								
Checksum	Urgent Pointer							
+-+								
Options	Padding							
+-+								
data								
+-+

The smallest fields in the table above are 16-bit. The count-
ing (for the seq number and ack number) is done by bytes of
data. The Rcvr Window holds the # of bytes the rcvr is will-
ing to accept (flow control). The checksum is calculated like
in UDP. In the FLAG field the following information is stored:

• header length tells how many 32-bit words are contained
in the TCP header. (4 bits)

• not used : 6 bits

• Urgent pointer bit is used to indicate a byte offset from
the current sequence number at which urgent data are to
be found (generally not used)

• ACK bit : is set to 1 to indicate that ACK number is
valid

• Push bit : The receiver is requested to deliver the data to
the application upon arrival and not to buffer it.

• Reset connection bit

• SYN bit : used to establish connections. The connection
request has SYN=1 and ACK=0.

• FIN bit : used to realease a connection

TCP sequence numbers and ACKs

Sequence numbers: byte stream ”number” of first byte in
segment’s data.
ACKs: Sequence number of next byte expected from other
side. Cumulative ACK.

TCP Round Trip Time and Timeout

EstimatedRTT = (1− α)·Estimated RTT + α·SampleRTT

This is a so called Exponential weighted moving average, a
typical value: α = 0.125.

Setting the timeout:

Timeout = EstimatedRTT + 4·Deviation
Deviation = (1− β)·Deviation

+β· |SampleRTT− EstimatedRTT|

TCP: Sender

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

loop(forever){
switch(event)

event: data received from application above
create TCP segment with sequence
number NextSeqNum
if (timer currently not running)
start timer

pass segment to IP
NextSeqNum = NextSeqNum + length(data)

event: timer timeout
retransmit not-yet-ack’ed segment with
smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase){
SendBase = y
if (there are currently not-yet-ack’ed
segments)
start timer

}
}

6

TCP ACK generation

Event TCP Receiver action
in-order segment arrival, delayed ACK. Wait up to

500ms for next segment.
If no segment, send ACK

no gaps,
everything else already
ACKed
in-order segment arrival, immediately send single

cumulative ACK,
ACKing both in-order
segments

no gaps,

one delayed ACK pending
out-of-order segment ar-
rival

send duplicate ACK,
indicating seq. # of next
expected bytehigher-than-expect seq #,

gap detected
arrival of segment that
partially or completely
fills gap

immediate ACK if seg-
ment starts at lower end of
gap

Fast Retransmit

Hack: If sender receives 3 ACKs for the same data, it supposes
that segment after ACKed data was lost.

TCP Flow Control

Definition 5 (Flow control) sender won’t overrun re-
ceiver’s buffers by transmitting too much, too fast.

RcvBuffer: size of TCP Receive Buffer
RcvWindow: amount of spare room in Buffer

Receiver: explicitly informs sender of (dynamically changing)
amount of free buffer space, for that the RcvWindow field in
TCP segment is used.

Sender: keeps the amount of transmitted, unACKed data less
than most recently received RcvWindow

TCP Connection Management

• Opening connection

1. client host sends TCP SYN segment to server. This
specifies initial seq. number and contains no data.

2. server host receives SYN, replies with SYNACK seg-
ment. The server will allocate buffers and specifies
server initial seq. #.

3. client receives SYNACK, replies with ACK seg-
ment, which may contain data.

• Closing connection

1. client end system sends TCP FIN control segment
to server

2. server receives FIN, replies with ACK. Goes into
CLOSEWAIT state, sends FIN.

3. client receives FIN, replies with ACK. Enters
”timed wait” - will respond with ACK to FINs

4. server receives ACK. Connection closed.

3.5 Principles of congestion control and
Queuing theory

Definition 6 (Congestion) Too many sources sending too
much data too fast for network to handle.

Some terms

• Each costumer spends T seconds in the box.

• We assume that the system was empty at time t = 0.

• A(t): Number of arrivals from time t = 0 to time t.

• D(t): Number of departures

• N(t): number of costumers in the system at time t.
N(t) = A(t)−D(t)

• Throughput: average number of costumers/messages per
second that pass through the system.

• Arrival Process: a1: 1st arrival in system. 2nd comes a2

times later. So the nth customer comes at time a1 +a2 +
. . . + an.

Arrivals, Departures, Throughput

The long-term arrival rate λ is defined as:

λ = lim
t→∞

A(t)
t

cust./sec

And the throughput µ:

µ = lim
t→∞

D(t)
t

cust./sec

the average service time is 1/µ.

Offered Load (or Traffic Intensity)

Offered load is defined as:

ρ =
λ

µ

The system is stable if ρ < 1.

Little’s Law

E[N]: average number of customers
E[T]: average time spent in system

E[N] = λ·E[T]

Binomial Random Variables & Poisson RV

Suppose we had n trials. Then for a series of trials, a binomial
RV with parameter (n, p) is the probability of having exactly
i arrivals out of n trials with independent arrival probability
p:

P [X = i] =
(

n

i

)
pi(1− p)n−i

7

Binomial RV can be approximated with Poisson RV. With
λp = np, the distribution of a Poisson RV is

P [X = i] = e−λp
λi

p

i!

The mean is λp.

The number of events occuring in any fixed interval of length
t is

P [N(t) = k] = e−λt (λt)k

k!

Exponential RV / Memoryless Property

Modeling of the time between occurence of events, it satifies
the ”memoryless property”.

The probability of having to wait at least h seconds is

P [X > h] = e−λh

Kendall Notation

Queuing systems are classified by a specific notation denoting:

1. The customer arrival pattern

2. The service time distribution

3. The number of servers

4. The maximum number of customers in the system (std.
= ∞)

5. Calling population (std. = ∞)

6. Queuing discipline (FIFO, LIFO, etc.; std. = ∞)

1 and 2 can be either: M = Markov (Poisson or Exponential),
D = Deterministic, Ek = Erlang with param. k, G = General.

M/M/1 Queue

The probability that an M/M/1 system is not idle is ρ.

E[A(t)] = λt and E[D(t)] = µt

Markovian Chains are used to describe such models. The
equilibrium must balance:

(λpi)t = (µpi+1)t → ρpi = pi+1

In the equilibrium, the number of customers in the system is

E[N] =
ρ

1− ρ

and the mean time in the system

E[T] =
1

µ(1− ρ)

Approaches towards congestion control

Two types of approaches usually used:

• End-end congestion control

– no explicit feedback about congestion from network

– congestion inferred from end-system observed loss,
delay

– approach taken by TCP

• Network-assisted cong. control
routers provide feedback to end systems

– single bit indicating congestion (used in SNA,
DECbit, TCP/IP ECN, ATM).

– explicit rate sender should send at.

Example for Network-Assisted Cong. Control: ATM ABR

ABR: available bit rate (so called ”elastic service”). If
sender’s path ”underloaded”, the sender should use available
bandwith and if sender’s path congested, the sender is
throttled to minimum guaranteed rate.

RM (resource management cells). This cells were sent by the
sender interspersed with data cells. The following bits in RM
cell were set by switches (”network assisted”): NI bit (no
increase in rate = mild congestion) and CI bit (congestion
indication). This RM cells were returned to sender by
receiver.

There is also a two-byte ER (explicit rate) field in RM cell,
a congested switch may lower this ER value in cell and the
sender’s rate is the minimum supportable rate on path.

EFCI bit in data cells: set to 1 in congested switch. If data
cell preceding RM cell has EFCI set, sender sets CI bit in
returned RM cell.

TCP Congestion Control

An end-end control (no network assistance) approach. The
transmission rate is limited by congestion window size,
Congwin, over segments.

w segments, each with MSS bytes sent in one RTT :

throughput =
w·MSS

RTT
Bytes/sec

This TCP congestion control works by ”probing” for usable
bandwith. Ideally it is transmitted as fast as possible
(=Congwin as large as possible) without loss. The Congwin
is increased until loss. If loss occurs the Congwin is decreased
and then the probing restarts.

This method can be divided into two ”phases”: slow start and
congestion avoidance. An important variable is the Treshold
which defines where TCP switches from slow start to conges-
tion avoidance.

8

TCP Slowstart

initialize: Congwin = 1
for (each segment ACKed)
Congwin++

until (loss event OR Congwin > Threshold)

The Congwin is exponential increased (per RTT).

TCP Congestion Avoidance

/* slowstart is over */
/* Congwin > Threshold */
Repeat {
w = Congwin
every w segments ACKed:
Congwin++

} until (loss event)
threshold = Congwin/2
Congwin = 1
Go back to slowstart

TCP Fairness

Definition 7 (Max-Min Fairness) A set of flows is max-
min fair if and only if no flow can be increased without de-
creasing a smaller or equal flow.

How do we calculate a max-min fair distribution?

1. Find a bottleneck resource r (router or link), that is, find
a resource where the resource capacity cr divided by the
number of flows that use the resource (kr) is minimal.

2. Assign each flow using resource r the bandwith cr/kr.

3. Remove the k flows from the problem and reduce the
capacity of the other resources they use accordingly.

4. If not finished, go back to step 1.

Is TCP Fair? Yes and no. TCP has an additive increase,
multipliticative (AIMD) congestion control algorithm what’s
good.

TCP latency modeling

W : fixed congestion window with W segments
S: MSS (bits)
O: Object size (bits)

Here it is assumed that no loss and no retransmission occur.

• WS/R > RTT + S/R:

latency = 2·RTT + O/R

• WS/R < RTT + S/R:

latency = 2·RTT + O/R

+(K − 1)[S/R + RTT −WS/R],
with K = O/WS

4 Network Layer

4.1 Virtual circuits and Datagram networks

Virtual circuits need a call setup on the network layer while
Datagram networks don’t need a such. In today’s Internet
Datagram networks are used.

4.2 Routing

Definition 8 (Routing protocol) Goal: determine
”good” path (sequence of routers) through network from
source to destination.

Routing Algorithm classification

Global or decentralized?

• Global

– all routers have complete topology, link cost info.

– ”link state” algorithms

• Decentralized

– router knows physically-connected neighbors, link
costs to neighbors

– iterative process of computation, exchange of info
with neighbors

– ”distance vector” algorithms

Static or Dynamic?

• Static

– routes change slowly over time

• Dynamic

– routes change more quickly. Periodic link update in
response to link cost changes.

Single Source Shortest Path: Algorithm idea

There are 3 groups of nodes in the network

• To the green nodes we know the shortest path

• The blue nodes are directly reachable from the green
nodes

• All other nodes are black

Idea

• Start with source s as the only green node.

• Color the best blue node green, one after another, until
all nodes are green.

9

Dijkstra’s Algorithm (for source s and edge costs c)

s.visited := true; s.distance := 0;

s.pred := s; // init source s

for all nodes v in V\s do // init all other nodes

v.visited := false; v.distance := infty;

v.pred := undefined;

B := {} // B is the set of blue nodes

for all nodes v in V\s that are direct neighbors

of s

B := B + {v}; v.distance := c(s,v);

v.pred := s;

while B not empty do // always choose best

// blue node v

v := node in B with minimum v.distance;

B := B - {v};

v.visited := true;

for all neighbors w of v with

w.visited = false; // update neighbors of v

if w not in B then

B := B + {w};

w.distance := v+c(v,w); w.pred := v;

if w in B then

if (v.distance+c(v,w) < w.distance) then

w.distance := v.distance+c(v,w);

w.pred := v;

endwhile

Dijkstra’s algorithm complexity

n nodes, m directed edges.

With a Fibonacci-Heap, one can implement the whole algo-
rithm in O(m + n log n).

4.3 Distance-Vector Routing

Each node communicates only with direct neighbors, and
”asks” them how long it takes from them to a destination.

From Distance Vector to Routing table

A node x has for each neighbor z an entry in distance vector
for each destination y; Dx(y, z) denotes the distance from x
to y through z. The best route for a given destination is
marked by

Dx(y) = minDx(y, z)
Dx(y, z) = c(x, z) + Dx(y)

Each node notifies neighbors only when its least cost path
to any destination changes. But this can lead to the famous
Count-to-infinity problem.

Hierarchical Routing

Aggregate routers into groups, ”autonomous systems” (AS).
Intra-AS and Inter-AS.

4.4 The Internet Network Layer

Different protocols: Routing protocols, IP protocol, ICMP
protocol.

IP Addressing: CIDR

Classless InterDomain Routing. The network portion of
address is of arbitary length. The address format is: a.b.c.d/x
where x denotes the number of bits in network portion of
address.

Example:

11001000 00010111 0001000︸ ︷︷ ︸
network part

000000000︸ ︷︷ ︸
host part

= 200.23.16.0/23

Getting a datagram from source to destination

If destination is in different network: look in routing table for
next hop to destination, link layer sends it to this hop.

IP datagram format

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|Version| IHL |Type of Service| Total Length |
+-+
| Identification |Flags| Fragment Offset |
+-+
| Time to Live | Protocol | Header Checksum |
+-+
| Source Address |
+-+
| Destination Address |
+-+
| Options | Padding |
+-+

IHL: Header length in bytes.
Total Length: total datagram length (bytes).
the second line is used for fragmentation, reassembly
Protocol: is the protocol on the upper layer (e.g. TCP)
The checksum is calculated like in UDP and TCP.

IP Fragmentation and Reassembly

Network links have MTU (max. transmission unit), which
denotes the largest possible link-level frame. Large IP
datagrams are divided (”fragmented”) within net if it is
necessary. They were only ”reassembled” at final destination.

Example:

+-+
| length=4000 | ID=x | fragflag = 0 | offset = 0 |
+-+

+-+
| length=1500 | ID=x | fragflag = 1 | offset = 0 |
+-+
+-+
| length=1500 | ID=x | fragflag = 1 | offset = 1480 |
+-+
+-+
| length=1040 | ID=x | fragflag = 0 | offset = 2960 |
+-+

10

4.5 ICMP: Internet Control Message Protocol

used by hosts, routers, gateways to communicate network-
level information. It is an network-layer ”above” IP, ICMP
msgs carried in IP datagrams.

4.6 DHCP

Client sends ”DHCP discover” to broadcast (255.255.255.255)
(src-port 68, dest-port 67), ”DHCP offer” back from server
to broadcast (src-port 67, dest-port 68) here the IP address x
is offered, ”DHCP request” from host to broadcast (src-port
68, dest-port 67), ”DHCP ack” from server to host with IP
address x.

4.7 NAT: Network Address Translation

outgoing datagrams: replace (source IP address, port #) of
every outgoing datagram to (NAT IP address, new port #),
the remote clients will respond using (NAT IP address, new
port #) as destination addr.

remember : (in NAT translation table) every (source IP ad-
dress, port #) to (NAT IP address, new port #) translation
pair.

incoming datagrams: replace (NAT IP address, new port #)
in dest fields of every incoming datagram with corresponding
(source IP address, port #) stored in NAT table.

4.8 Intra-AS Routing

A.k.a Interior Gateway Protocols (IGP).

Most common IGPs: RIP (= Routing Information Protocol),
OSPF (Open Shortest Path First), IGRP (Interior Gateway
Routing Protocol).

RIP

Distance vector algorithm. Distance metric: number of
hops. The distance vectors are exchanged every 30 sec via
”advertisement”. In each advertisement: route to up to 25
destination networks within AS.

If no advertisement heard after 180 sec → neighbor/link de-
clared dead.

• routes via neighbor invalidated

• new advertisements sent to neighbors

• poison reverse used to prevent ping-pong loops. If Z
routes through Y to get to X: Z tells Y its (Z’s) distance
to X is infinite (so Y won’t route to X via Z).

RIP Table processing

RIP routing tables managed by application-level process
called route-d. Advertisements sent in UDP packets, peri-
odically repeated.

4.9 OSPF (Open Shortest Path First)

Uses Link State algorithm, route computation using Dijk-
stra’s algorithm, LS packet dissemination (=Ausstreuung).

Security: all OSPF messages authenticated, so no malicious
intrusion. TCP connections used.

4.10 Inter-AS routing

BGP

A path vector protocol. Messages exchanged using TCP.

1. Receive BGP update (announce or withdrawal) from a
neighbor.

2. Update routing table

3. Does update affect active route? (Loop detection with
information about the whole path, which neighbor sends;
policy). If yes, send update to all neighbors that are
allowed by policy.

BGP convergence

If a link comes up, the convergence time is in the order of
time to forward a message on the shortest path.

If a link goes down, the convergence time is in the order of
time to forward a message on the longest path.

A ”cause tag” attachted to the withdrawal message identify-
ing the failed link/node reduces the convergence time to the
shortest path.

4.11 Router Architecture Overview

Two key router functions:

• run routing algorithms/protocols

• switch datagrams from incoming to outgoing link.

Input Port Functions

Decentralized switching

• given datagram dest., lookup output port using routing
table in input port memory

• goal: complete input port processing at ”line speed”

• queuing: if datagrams arrive faster than forwarding rate
into switch fabric

4.12 IPv6
+-+
|Version| Traffic Class | Flow Label |
+-+
| Payload Length | Next Header | Hop Limit |
+-+
| |
+ +
| |
+ Source Address +

11

| (128 bits) |
+ +
| |
+-+
| |
+ +
| |
+ Destination Address +
| (128 bits) |
+ +
| |
+-+

Next header: identify upper layer protocol for data.

5 Link layer

5.1 Implementation

Link layer implemented in ”adapter” (a.k.a. NIC).

5.2 Error Detection

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| D | EDC |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

EDC : Error Detection and Correction bits (redundancy)
D : Data protected by error checking, may include header
fields.

Parity Checking

Only one bit. To detect single bit errors. Is set to 1 if total
sum of 1’s in data is even, otherwise 0.

Cyclic Redundancy Code

Generator polynomial G(x) = x16 + x12 + x5 + 1.
Let the whole frame (D+EDC) be polynomial T (x).

Idea: fill EDC (CRC) field such that T (x) mod G(x) = 0.

How to divide with polynomials? Example with
G(x) = x2 + 1(= 101)

11101100 / 101 = 110110, Remainder 10
100
011
111
100
010

The subtraction is an XOR, so there is no add carry. You
can only divide if the divisor is of same length.

How to fill EDC: Calculate remainder of D ‖ 0 . . . 0︸ ︷︷ ︸
|G|−1

divided

by G(x) and afterwards T becomes:

D ‖ D mod G(x)

5.3 Multiple Access Links and Protocols

• point-to-point (single wire; e.g. PPP, SLIP)

• broadcast (shared wire or medium; e.g. Ethernet,
WLAN)

• switched (e.g. switched Ethernet, ATM)

Channel Partioning: Frequency Division Multiplex (FDM)

Seperation of the whole spectrum into smaller frequency
bands. A channel gets a certain band of spectrum for the
whole time. Example: broadcast radio.

Channel Partioning: Time Division Multiplex (TDM)

A channel gets the whole spectrum for a certain amount of
time. Example: Ethernet.

Channel Partitioning: Time/Frequency Division Multiplex

A channel gets a certain frequency band for some time. Ex-
ample: GSM.

Channel Partioning: Code Division Multiplexing (CDM)

Each channel has a unique code. All channels use the same
spectrum at the same time. Example: UMTS.

5.4 Multiple Access Control (MAC) Protocols

Distributed algorithm that determines how stations share
channel, i.e. determine when station can transmit. The com-
muncation about channel sharing must use channel itself.

”Taking Turns” MAC protocols

Polling

• master node ”invites” slave nodes to transmit in turn

• Request to Send, Clear to Send messages

• concerns: polling overhead, latency, single point of failure
(master)

Token passing (Token Ring)

• control token passed from one node to next sequentially

• token message

• concerns: token overhead, latency, single point of failure
(token)

”Taking Turns” Protocols: Round Robin

• Round robin protocol: station k sends after station k−1(
mod n)

• If a station does not need to transmit data, then it sends
ε

• There is a maximum message size m that can be trans-
mitted

12

5.5 Random Access protocols

• When node has packet to send: transmit at full channel
data rate R, no a priori coordination among nodes

• Two or more transmtting nodes → ”collision”

• Random access MAC protocol specifies how to detect
collisions and how to recover from collisions.

• Examples: ALOHA and variants, Backoff protocols
(CSMA)

Slotted Aloha

• Time is divided into equal size slots

• Node with new arriving packet: transmit at beginning of
next slot

• If collision: retransmit packet in future slots with prob-
ability p, until successful

In slotted aloha a station can transmit successfully with
probability at least 1

e .

How quickly can an application send packets to the radio
transmission unit?
The probability that a new packet is received by the buffer is
λ; the probability that sending succeeds is µ = 1/e, for any
time slot. To keep the queue bounded we need ρ = λ/µ < 1,
thus λ < 1/e. This is for M/M/1.

Adaptive slotted aloha

Idea: change the access probability with the number of
stations.

Idea: Try to estimate the number of stations

• If you see that nobody sends, increase p.

• If you see that more than one sends, decrease p.

Pure ALOHA

Packet needs transmission: send without awaiting for begin-
ning of slot.

The rate is half of the slotted ALOHA.

Demand Assigned Multiple Access (DAMA)

Reservation:

• a sender reserves a future time-slot

• sending within this reserved time-slot is possible without
collision

• reservation also causes higher delays

• typical scheme for satellite systems

Backoff Protocol

Backoff protocols rely on ack’s only. Binary exponential
backoff, for example, works as follows: If a packet has
collided k times, we set p = 2−k.

For infinitely many stations this protocol isn’t stable for λ >
0, but if there are only finite stations, the protocol is only
unstable for λ > 0.568.

CSMA: Carrier Sense Multiple Access

Idea: listen before transmit. If channel sensed idle: trans-
mit entire packet; if sensed busy, defer transmission. There
exist two variants for the defering: Persistant CSMA (retry
immediately with probability p when channel becomes idle),
Non-persistent CSMA (retry after random interval).

CSMA/CD (Collision Detection)

Collisions were detected within short time and colliding trans-
missions were aborted, reducing channel wastage. CSMA/CD
used in Ethernet.

5.6 LAN Addresses and ARP

MAC address: used to get datagram from one interface
to another physically-connected interface (same LAN).
Therefore 48 bit MAC addresses burned in the adapter ROM
are used.

ARP: Address Resolution Protocol. IP-Address → MAC-
Address.

Each IP node on LAN has ARP table in which the IP/MAC
address mapping for some LAN nodes are stored together
with the time after which the address mapping will be
forgotten.

A knows B’s IP address, wants to learn physical address of
B:
A broadcasts ARP query packet, containing B’s IP address.
B replies to A with its physical layer address.

5.7 Ethernet

Ethernet Frame Structure

+-+
| Preamble | Dest | Source | Type | Data | CRC |
+-+

Preamble:
7 bytes with pattern 10101010. Followed by 1 byte with
pattern 10101011. They were used to synchronize receiver,
sender clock rate.
Addresses:
6 bytes, frame is received by all adapters on a LAN and
dropped if address does not match.
Type (2 bytes):
Indicates the higher layer protcol mostly IP (0x0800).
CRC (4 bytes):

13

checked at receiver, if error is detected, the frame is simply
dropped.

Ethernet CSMA/CD algorithm

1. Adapter gets datagram from network layer and creates
frame

2. If adapter senses channel idle, it starts to transmit frame.
If it senses channel busy, waits until channel idle and then
retransmit.

3. If adapter transmits entire frame without detecting an-
other transmission, the adapter is done with frame.

4. If adapter detects another transmission while transmit-
ting, aborts and sends jam signal (48 bit).

5. After aborting, adapter enters exponential backoff: after
the m-th collision, adapter chooses a K at random from
0, 1, 2, . . . , 2m − 1. Adapter waits K· 512 bit times (e.g.
1/(100 Mbit)) and returns to Step 2.

CSMA/CD efficiency

utilization ≈ 1
1 + 6.2· tprop/ttrans

tprop: max. progagation time between any two nodes in LAN
ttrans: time to transmit max-size frame.
Utilization goes to 1 as tprop → 0 or ttrans →∞

Interconnecting with Bridges

A bridge is a link layer device. Stores and forwards Ether-
net frames. Examines frame header and selectively forwards
frame based on MAC destination address.

6 Peer-To-Peer Computing

6.1 Hashing

Distributed Hashing and Linear Hashing

key 7−→ .10111010101110011 . . . ≈ .73

Arrange all hosts on a line from 0 to 1. For all documents
0.101x peer x has stored the forward-pointer to the real file.
Problem: if new machines join a lot of objects have to be
moved. Linear hashing solves this problem by just moving a
few objects to a new machine (about 1/n). It divides the files
host y is responsible for to host y and the new host.

Consistent Hashing

Also the machines get hashed (IP + Port). Each machine is
responsible for the files closest to it.

Problems

The problem with Linear and Consistent Hashing is, that
every machine needs to know all the participants. Number
one challange: Dynamics.

6.2 Search Tree

Peer x must only know subset of others (A host in the other
subtree of every node you pass when searching after your
hash). It sends his search query to this host which has the
same prefix as the search hash. This host sends the query
further and so on.

Time to search if tree is balanced: O(log n)

Peer Join

Joiner must already know a peer in system (e.g. ping ran-
domly, try some of those you met last time). After that you
have to find your place in the P2P system.

Find your place

The random method: Choose a random bit string. Search
for the bit string. Split with the current leave responsible for
the bit string. Search for your neighbors.

Time to join: 1st part O(log n), 2nd part O(log2 n)

Since all peers chose their position randomly, the tree will
more or less be balanced.

Leave

A Leave is detected by the neighbors in the P2P system
(periodically ping).

If a peer that left was detected, it must be replaced. If peer
had sibling leaf, the sibling might just do a ”reverse split”. If
not search recursively:

1. Go down sibling tree, until you hit sibling leaves.

2. Make the left sibling the new common node.

3. Move the free right sibling to the empty spot.

6.3 Chord

Every peer has log n neighbors; one in about distance 2−k, k =
1, 2, . . . , log n. Imagine a ring.

Skip List

• (Doubly) linked list, with sorted items

• All items have additional pointers on levels 1, . . . , k, with
probability 2−k

• Search, insert, delete: Start with root, search for the
right interval on highest level, then continue with lower
levels.

Search, insert and delete: O(log n).

14

Skip Net

Use the skip list as a peer-to-peer architecture: Again each
peer gets a random value between 0 and 1, and is then re-
sponsible for storing that interval. Instead of a root and a
sentinel node, the list is short-wired as a ring.

15

	Introduction
	Overview

	Applications
	Internet transport protocols services
	The Web
	FTP
	Email
	DNS: Domain Name System
	Socket programming

	Transport
	Multiplexing/Demultiplexing
	UDP: User Datagram Protocol
	Reliable data transfer
	TCP
	Principles of congestion control and Queuing theory

	Network Layer
	Virtual circuits and Datagram networks
	Routing
	Distance-Vector Routing
	The Internet Network Layer
	ICMP: Internet Control Message Protocol
	DHCP
	NAT: Network Address Translation
	Intra-AS Routing
	OSPF (Open Shortest Path First)
	Inter-AS routing
	Router Architecture Overview
	IPv6

	Link layer
	Implementation
	Error Detection
	Multiple Access Links and Protocols
	Multiple Access Control (MAC) Protocols
	Random Access protocols
	LAN Addresses and ARP
	Ethernet

	Peer-To-Peer Computing
	Hashing
	Search Tree
	Chord

