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A B S T R A C T

Structured output prediction is the task of learning and predicting
with models where the hidden state of several random variables is
described jointly. Recently these models became very popular as a
growing number of applications have been identified to exhibit strong
dependencies between the random variables describing the predicted
output. In computer vision, which is the core application focus in this
thesis, a structured model can for example incorporate prior assump-
tions about the smoothness of annotations of neighboring pixels. This
thesis introduces novel approximate methods for the two core problems
of structured models: Parameter estimation or learning and prediction or
inference. Both tasks are intractable in the general case where the under-
lying (hyper)graph characterizing the dependencies between random
variables contains a non-negligible number of cycles. Our learning and
inference algorithms are based on two relatively simple, yet powerful
ideas.

The first idea leverages on the fact that learning and prediction can
be efficiently solved and are thus “easy”, in models having an under-
lying tree or forest graph representation. We exploit this fact to devise
approximate learning and inference algorithms in general graphs by
decomposing the loopy graph into subsets of either nodes or edges
with forest-like connectivity. Intelligent combinations of the computa-
tions carried out on the tree graphs, lead to accurate approximations
of the original problem. In this thesis we demonstrate the efficacy of
this approach when applied to both model parameter estimation, and
obtaining the values of the variables minimizing the energy given by
the model.

The second observation which sets the foundation for this work is that
some optimization problems can be simplified by the introduction of a
smoothing parameter, also referred to in the literature as a temperature.
Using the smoothing approach we introduce a unified model for the
two most popular discriminative structured models in use today, the
Conditional Random Field and the structured Support Vector Machine.
The unified model can lead to more accurate predictions. Furthermore,
we demonstrate the value of the smoothing parameter in the context of
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governing the enforcement of non-convex constraints. In particular, this
approach is here applied for inferring the state with the minimum
energy in structured models: Initially a convex linear programming
relaxation is solved. By increasing the inverse temperature a non-convex
quadratic programming relaxation arises, which however becomes
easier to solve through the gradual decrease of the temperature. The
resulting algorithm substantially outperforms state-of-the-art solvers
based on linear programming relaxations at a minor increase in running
time.

The described learning and inference approaches give rise to efficient
and accurate algorithms for structured output prediction. In a related
work, we also demonstrate that by directly modeling the problem at
hand, the accuracy can be further increased: We characterize a sub-class
of high-order loss functions for which the resulting learning problem is
exactly solvable.

The methods studied in this thesis are applied to various problems
in computer vision. For these applications the underlying graphical
models are typically complex as many cycles are present. Furthermore,
the training data sets are usually large and the base-line performance
is often quite poor. More specifically, we study image denoising, cell
detection in medical images as well as foreground-background segmen-
tation.
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Z U S A M M E N FA S S U N G

Structured output prediction beschreibt das Lernen und die Vorhersage
mit Modellen in welchen die latenten Zustände von mehreren Zufalls-
variablen gemeinsam beschrieben werden. In letzter Zeit sind solche
Modelle sehr populär da eine wachsende Anzahl an Anwendungen
identifiziert wurde welche starke Abhängigkeiten zwischen den Zu-
fallsvariablen zeigen. Im Bildverstehen, welches die Haputanwendung
dieser Arbeit ist, können strukturierte Modelle beispielsweise vorrangi-
ge Annahmen über die Glattheit von benachbarten Bildpunkten in einer
Annotation berücksichtigen. Diese Arbeit präsentiert neue approximati-
ve Methoden für die zwei Kernprobleme von strukturierten Modellen:
Parameterschätzung oder Lernen und die Vorhersage oder Inferenz. Beide
Aufgaben sind im Allgemeinen schwierig zu lösen wenn die zugrun-
deliegenden (Hyper)graphen, welche die Abhängigkeiten zwischen
Zufallsvariablen beschreiben, eine nicht vernachlässigbare Anzahl Zy-
klen aufweist. Unsere Lern- und Verhersagealgorithmen basieren auf
zwei relativ simplen aber dennoch mächtigen Ideen.

Die erste Idee macht sich zu Nutzen, dass Lernen und die Vorhersage
in Modellen wo die zugrundeliegende Repräsentation ein Baum oder
Wald ist, effizient gelöst werden können und deshalb in einem gewissen
Sinn “einfach” sind. Wir benutzen diese Tatsache um approximative
Lern- und Vorhersagealgorithmen für allgemeine Graphen zu entwer-
fen. Die Algorithmen zerlegen den zyklischen Graphen in Untermengen
von entweder Knoten oder Kanten welche eine waldförmige Konnek-
tivität haben. Intelligente Kombinationen von Berechnungen auf den
Bäumen führen zu akkuraten Approximationen für das ursprüngliche
Problem. In dieser Arbeit demonstrieren wir die Wirksamkeit von die-
sem Vorgehen für die Parameterschätzung in strukturierten Modellen
und die Berechnung des Zustandes, welcher eine gegebene Modellener-
gie minimiert.

Die zweite Beobachtung welche das Fundament für diese Arbeit
bildet, besteht darin, dass gewisse Optimierungsprobleme durch das
Einführen eines Glättunsparameters, auch Temperatur genannt, verein-
facht werden. Ein solcher Glättungsansatz erlaubt es uns ein verein-
heitlichtes Modell für die zwei wichtigsten diskriminativen struktu-
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rieren Modelle, das konditionierte Zufallsfeld und die strukturierte
Stützpunktmaschine, einzuführen. Das vereinheitlichte Modell kann zu
akkurateren Vorhersagen führen. Weiter demonstrieren wir den Nutzen
des Glättungparameters im Zusammenhang mit dem Erzwingen von
nicht konvexen Bedingungen. Im Besonderen wird dieser Ansatz hier für
die Inferenz des minmalen Energiezustandes verwendet: Anfangs wird
eine konvexe lineare Programm-Relaxierung gelöst. Durch das Erhöhen
der inversen Temperatur entsteht ein nicht konvexes quadratisches
Programm, welches aber einfacher zu lösen ist durch die graduelle
Erhöhung der inversen Temperatur. Der resultierende Algorithmus
übertrifft lineare Programm-Relaxierungen, welche auf dem neusten
Stand der Technik sind, substantiell. Der Algorithmus hat nur eine
geringe Erhöhung der Laufzeit zur Folge.

Die beschriebenen Lern- und Inferenzansätze führen zu effizienten
und akkuraten Algorithmen für structured output prediction. In einer
verwandten Arbeit zeigen wir auch, dass durch die direkte Modellie-
rung des Problems die Genauigkeit weiter erhöht werden kann: Wir
charakterisieren eine Unterklasse von hochgradigen Verlustfunktionen für
welche das resultierende Lernproblem verlustfrei berechenbar ist.

Die Methoden welche wir in dieser Arbeit studieren, wenden wir auf
verschiedene Probleme im Bildverstehen an. In diesen Anwendungen
sind die zugrundeliegenden graphischen Modelle typischerweise kom-
plex und weisen viele Zyklen auf. Weiter sind die Trainingsdatensätze
oft gross und die Baseline Performanz ist häufig relativ schlecht. Im
Speziellen studieren wir Bildwiederherstellung, Zelldetektion in medi-
zinischen Bildern und die Vordergrund-Hintergrund Segmentierung.
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1
I N T R O D U C T I O N

This chapter introduces the basic setting of discriminative structured
output prediction and details our contributions. We conduct a high-
level discussion and defer to Chapter 2 for a more formal introduction
to the topic.

1.1 structured output prediction

A structured model is broadly speaking, a model in which dependencies
among random variables are present. Prediction and parameter estima-
tion in this model therefore need to reason about some variables jointly,
as opposed to considering them independently. These dependencies
generally increase the modeling power, and thus the accuracy of the
model. Consider for example the task of predicting a part-of-speech
tag sequence for every word in a sentence. In a simplified form we can
for example imagine that the set of possible tags consists of a noun,
verb, determiner (dt), preposition (prep) and adjective (adj). The tags of
two neighboring words are clearly dependent, as a noun often follows
an adjective etc., see Figure 1.1 for an illustration. Such dependencies
could not be expressed in an independent model.

wizards make toxic brew for the evil queen

noun verb adj noun prep dt adj noun

Figure 1.1: Simplified part-of-speech tagging example. The shaded ob-
served words are labeled with different part-of-speech tags.
The model assumes a chain structure for the dependencies
between the word labels.

Another example is foreground-background segmentation, discussed
in more detail in Chapter 4. Given an image showing an object, such as
the scissors in Figure 1.2, we would like to predict the location of the
object. More specifically, we aim at predicting for each pixel, whether

1



introduction

it is part of the foreground, i.e. the object itself, or the background.
Again, as for the part-of-speech tagging example, one would expect

(a) Input image (b) Segmentation

Figure 1.2: The input image on the left is segmented into foreground
and background pixels to the right. Foreground pixels are
shown in white and background pixels in black. The data is
taken from the GrabCut dataset.

that the label (i.e., background or foreground) of a pixel is dependent
on closeby pixels. If we know that all of the neighbors of a particular
pixel are labeled background, then the pixel itself is most likely also
labeled background. Exactly this type of reasoning lies at the heart
of structured models. However, the increased modeling power also
comes at an increase in both statistical and computational complexity
when compared to independent models. Structured models in which
the underlying dependencies are specified by a loop-free graph, such
as the part-of-speech example, are generally efficiently learnable. For
more complex dependencies this is no longer the case and one has to
resort to approximate approaches. Approximate methods for learning
and prediction in structured models are the focus of this thesis. We
explore different trade-offs in terms of accuracy and efficiency and also
characterize particular settings in which learning and prediction are
tractable.

Structured models root in Ising’s seminal work in the 1920s (Ising
1925). The models were later generalized and many basic connections
and techniques have been established in the 1970s and 1980s (Hammer-
sley and Clifford 1971; Besag 1974; Geman and Geman 1984). These ap-
proaches, also known as Markov Random Fields (MRFs), have been fairly
popular in the computer vision research community. MRFs received a
renewed interest by the machine learning community with the introduc-

2

http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmentation/grabcut.htm
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tion of the Conditional Random Field (CRF) (Lafferty, McCallum, and
Pereira 2001) and the structured support vector machine (Tsochantaridis
et al. 2005; Taskar, Guestrin, and Koller 2003). These modern structured
models are in most aspects almost identical to traditional MRFs, but
differ in one important aspect: the models are discriminative, which
means they condition on the observed data. This enables the use of almost
arbitrarily complex features, with usually only a minor effect on the
runtime of the resulting structured classifiers. For many applications
these more complex feature dependencies were an enabling technique
to improved prediction accuracy (Mccallum, Freitag, and Pereira 2000).
It turned out that practitioners, such as the computer vision commu-
nity, have already successfully applied these discriminative structured
models, long before they were introduced. However, most often the pa-
rameters of the models were (and still are) manually optimized. While
this approach works reasonably well for small parameter spaces, for
complicated high-dimensional scenarios, it is bound to fail. The CRF and
the structured support vector machine are two examples of structured
models, that also formulate the learning of these model parameters in a
principled way.

1.2 contributions

The core problem that we study in this thesis is learning and pre-
diction in intractable structured models. While the aforementioned
part-of-speech tagging application has a linear dependency structure
for which dynamic programming approaches lead to efficient com-
putations for finding the most probable labeling, no such algorithms
are known for general cyclic dependencies. Such loopy graphs are
commonly encountered in computer vision applications, such as the
foreground-background segmentation task briefly sketched above. Our
work introduces an efficient message-passing algorithm for computing
the most probable prediction in a general pairwise graphical model.
The algorithm improves on the widely adopted linear programming
relaxation. Further, we derive an extension of composite likelihood for
learning the parameters of these intractable structured models.

We demonstrate in a second related line of research that the accuracy
of these structured classifiers can be further improved even in tractable
settings. Our contributions are two fold: First, we introduce a novel
surrogate loss, which can lead to increased accuracy in scenarios with
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extensive class overlap. Second, a novel learning algorithm for exact
high-order loss minimization is given, enabling an improved modeling
of some labeling problems encountered in medical imaging.

More specifically, the contributions of this thesis can be summarized
as follows.

1. We show that a combination of a linear programming relaxation and
a quadratic programming relaxation can lead to improved algorithms
for Maximum-A-Posteriori (MAP) inference (Chapter 3). The inferred
labelings show lower energies than the ones obtained using linear
programming based algorithms at a minor increase in running
time. The combined formulation is based on Kullback-Leibler
penalty terms that force the linear and quadratic programming so-
lutions to agree. The resulting optimization problem is efficiently
solved using a message-passing algorithm.

2. We characterize a set of high-order loss functions for which learning in
a structured support vector machine is tractable (Chapter 4). We study
in detail the count-loss for binary segmentation which considers
the absolute difference between the number of foreground pixels
in a prediction and the ground-truth segmentation.

3. We give a detailed theoretical analysis and empirical comparison of the
two dominant structured output learning approaches (Chapter 5). We
introduce a unifying surrogate loss for structured output learning.
The surrogate loss is parameterized by an additional hyperparam-
eter. Extremal points of this hyperparameter correspond to the
CRF and the structured support vector machine.

4. We introduce a novel structured lower bound for the training of CRFs

(Chapter 6). The lower bound generalizes the composite likelihood
and allows to balance the computational efficiency of learning
versus the accuracy of the parameter estimation.

The thesis is organized as follows: First we give an in-depth intro-
duction to the topic (Chapter 2). The main content of the thesis in the
first part studies score maximizing models (Chapter 3 and Chapter 4),
followed by probabilistic approaches (Chapter 5 and Chapter 6) in the
second part. We conclude by giving an outlook on promising extensions
of our work in Chapter 7.
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1.3 a remark regarding computational complexity

1.3 a remark regarding computational complexity

Throughout this thesis we will assume that P 6= NP. Expressions
such as “intractable” or “exponentially large” should always be under-
stood with respect to this assumption. We will however not state this
assumption every time explicitly.
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2
B A C K G R O U N D

This chapter introduces our notation and the fundamental concepts un-
derlying structured output learning and prediction. Recent text books
on the topic such as (Koller and Friedman 2009), (Bakir et al. 2007) or
(Nowozin and Lampert 2011) cover many of the concepts in similar
depth.

In structured output prediction, the task is predicting interdepen-
dent output variables y ∈ Y1 for a given input variable x ∈ X . An input and output

variablesindividual output variable yi has the discrete and finite output domain
Yi. For example for the task of foreground-background segmentation
mentioned in Chapter 1, the output variables y correspond to the full
segmentation of the image and yi denotes the assignment of the i-th
pixel to either foreground (yi = 1) or background (yi = 0). The out-
put domain Y is hence of size 2M, where M denotes the number of
pixels of the image. Finally, x corresponds to the image for which
a segmentation is computed. The core problem in structured output
prediction arises from the combinatorial explosion also present in the
foreground-background segmentation task. An exponential number of
possible outputs have to be evaluated in order to choose the one that
minimizes some cost function. The problem becomes even harder when
the cost function itself is learned from training examples, as a modified
prediction step has to be performed for different cost functions.

The remainder of this chapter is organized as follows: Section 2.1
discusses the optimal prediction according to Bayesian decision theory,
Section 2.2 introduces factorized energy models defined by a factor
graph or an undirected graphical model. Section 2.3 considers a dis-

1 Note that in our notation we assume that all inputs have the same output domain Y .
This is generally not fulfilled in practice, as e.g. a larger image obviously has a larger
segmentation output domain than a smaller image. The notation would become less
readable in case we would incorporate this possibility. In practice this however does
not pose a problem and in our experiments we will also consider applications where
the output domain is different for different examples.

7



background

criminative modelling approach for structured domains, often referred
to as Conditional Random Field (CRF). Section 2.4 introduces the gen-
eral theory of exponential family distributions, which is an essential
tool for the understanding of many aspects of CRF models. Section 2.5
covers parameter estimation in structured models, of which several
applications are sketched in Section 2.6. Finally, Section 2.7 and Sec-
tion 2.8 discuss exact and approximate inference for structured models
and its applications to learning the model parameters.

2.1 loss functions and bayesian decision theory

This section addresses the following question: “For a given posterior
distribution P(y|x), what is the optimal way to predict output variables
y for a given input variable x?” For now we treat P(y|x) as a black-box
that we assume to be known, the discussion in the next sections will
cover the estimation of this posterior distribution from labeled training
data.

In order to answer the question of optimal prediction, one has to first
define a loss function ∆y∗(y) measuring the error of predicting y whenloss function

the ground-truth is y∗. We assume the following properties of a loss
function:

1. Non-negativity: ∆y∗(y) ≥ 0 ∀y.

2. Zero for the ground-truth: ∆y∗(y∗) = 0.

3. Upper bounded by one, i.e. ∆y∗(y) ≤ 1 ∀y,y∗.

While the last condition is not strictly necessary, we shall make this
assumption throughout the thesis as it provides a range restriction
on the loss. The following are popular and simple choices for loss
functions:

zero-one loss Error of zero if the correct output is predicted and
one otherwise. Formally the loss reads as follows

∆zero-one
y∗ (y) := 1− Iy∗(y).

Here Iy∗(y) is a multivariate version of the indicator function,
which is zero if all the elements of y agree with y∗ and zero
otherwise. While meaningful for multi-class classification settings
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(assuming no similarity information between classes is available),
for most scenarios involving several variables this loss is too strict:
Surely, for the foreground-background segmentation example in
the introduction, a segmentation that is only wrong in one of
the pixels is preferable over one that gets all the pixels wrong.
According to the zero-one loss both of these segmentations are
equally bad and incur a loss of one.

hamming loss The Hamming loss, also referred to as per-variable
zero-one loss, is a standard loss for sequences or other forms of
segmentation. This loss favors predictions that lead to partially
correct results, but does not assume any ordering on the label
space Yi of an individual output variable. The Hamming loss is
defined as:

∆Hamming
y∗ (y) :=

1
|V| ∑i∈V

[
1− Iy∗i (yi)

]
.

Here V denotes the set of all the output variables. The loss is
normalized and hence, just like the zero-one loss, always confined
to the range [0, 1].

per-variable squared loss While the Hamming loss assumes a
decomposition of the loss according to the different output vari-
ables yi, it considers all the wrong predictions for variable yi
equally unfavorable. This weighting is relaxed by the squared
loss, which penalizes wrong predictions by the squared distance
between predictions yi and y∗i :

∆squared
y∗ (y) :=

1
|V| ∑i∈V

1
dmax(i)2 (y∗i − yi)

2 .

Here dmax(i) = |Yi| − 1 denotes the maximum possible difference
between yi and y∗i . This term is needed in order to make the
loss sum to at most one. For the task of image denoising, where
an individual pixel yi assumes gray-scale values in the range
yi ∈ [0, 255], the squared loss is a much more meaningful loss
than the Hamming loss: A gray-scale value difference of one
between two pixels is clearly more favorable than a difference of
255, which would mean that the ground-truth pixel is white and
the prediction is black, or vice versa.
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It is straightforward to generalize the losses above to weighted ver-
sions, in which for each output variable yi a weight αi ∈ [0, 1] indicates
its importance.

For a given loss and posterior P(y|x) one can derive the optimal
predictor. According to Bayesian decision theory, minimization of the
risk (or equivalently expected loss) leads to the best possible prediction
function f : X → Y (Robert 2001, Theorem 2.3.2).

f Bayes(x) = argmin
y∈Y

∑
y′∈Y

∆y′(y)P(y′|x). (2.1)

This prediction function is sometimes referred to as the minimum Bayes
risk predictor as it yields to the optimal prediction function for a genericminimum Bayes risk

predictor loss function ∆. However, the optimality of the prediction function is
under the assumption that the true posterior P(y|x) is known. If this is
not the case, optimality is no longer guaranteed. Below we discuss the
resulting optimal prediction function for particular losses, an overview
is given in Figure 2.1.

maximum-a-posteriori MAP prediction is optimal for the zero-one
loss and returns the label corresponding to the largest posterior
probability:

f MAP(x) = argmax
y′∈Y

P(y′|x).

Efficient algorithms for computing the MAP prediction exist for
many modeling assumptions, however these algorithms are often
only approximate. Algorithms for MAP inference are described in
detail in Section 2.7.

maximum posteriori marginal According to Bayesian decision
theory, for the Hamming loss the Maximum Posteriori Marginal
(MPM) is the optimal predictor, e.g. (Marroquin, Mitter, and Poggio
1987). It takes the following form

f MPM(x) = argmax
yi

P(yi|x) ∀i.

Here P(yi|x) = ∑y\yi
P(y|x) denotes the marginal of the i-th

variable, obtained by integrating out all of the variables except
for yi. Marginals are often more difficult to compute than the
MAP prediction, algorithms for this problem are again described
in Section 2.7.
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minimum mean squared error The Minimum Mean Squared Er-
ror (MMSE), as the name indicates, is the best predictor for the
squared loss. The output variables are predicted according to

f MMSE(x) = EP(yi |x)[yi] ∀i.

The expectation is given as EP(yi |x)[yi] = ∑yi∈Yi
yiP(yi|x) and thus

similarly to the MPM predictor, marginals need to be computed.

P(y|x)

MAP MPM MMSE

zero-one per-variable squaredHamming

Figure 2.1: Optimal prediction approaches for different losses.

The three loss functions discussed here are rather simplistic. In fact,
the Hamming loss and the squared loss both decompose into a sum
over terms of the individual output variables, which simplifies some
of the involved computations substantially. Often the loss used for the
evaluation on real-world tasks, such as semantic segmentation, is more
complex. Some examples of more complex losses are: the area under
precision-recall curve, the F1 score, and the peak signal-to-noise ratio.
In Chapter 4 we discuss complex loss functions in more detail.

The current section investigated different loss functions and optimal
prediction strategies. In the previous examples of prediction func-
tions, we assumed that the true posterior P(y|x) is given. The next
two sections will discuss modeling approaches that aim at accurately
describing the true posteriori using parameterized factor graphs. These
models include terms that allow the true data generating process to be
modeled more accurately than in fully factorized models. However a
gap between the true posterior and the model posterior still remains.
We refer to this gap as a misspecification, that can potentially destroy
some of the optimality guarantees given here.

2.2 factor graphs and markov random fields

Factor graphs (Kschischang, Frey, and Loeliger 2001) are important for
modeling complex systems of interdependent random variables. Their
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applications are widespread and include computer vision, communica-
tion and signal or natural language processing. In this section we begin
with an energy representation, the link to probabilistic models is made
later through the Gibbs distribution. Factor graphs are a graphical
notation for the joint distribution of random variables. A factor graph
FG = (V , C, E) contains two types of nodes: random variable nodes
V and factor nodes C. It is convenient to represent a factor graph as
a diagram, where random variable nodes are illustrated by a circle

. Direct dependencies between random variables are specified using
factor nodes, shown as a rectangle . If a random variable is part of a
dependency it is connected to the corresponding factor node. Therefore
the resulting graph is a bipartite graph with the set of variable nodes
on one side and the set of factor nodes on the other side. The energy
E(y) of a configuration y of random variables is then assumed to beenergy

given by
E(y) = ∑

c∈C
θc(yc).

Here θc(yc) : Yc → R is referred to as a factor or potential and de-potential

termines the energy contribution of the joint configuration yc. The
subset notation restricts the variables to only those in factor c. Output
configurations with smaller energies are favorable over those that have
a higher energy. A large part of this thesis discusses approaches to
learn suitable potentials from labeled training data, for now we however
assume that they are given. Figure 2.2 shows an example of a simple
factor graph. In the remainder we will use the convention of denoting

y1 y2

y3 y4

E(y) = E(y1, y2, y3, y4) =

θ1(y1) + θ1,2(y1, y2) + θ2,3,4(y2, y3, y4)

Figure 2.2: A simple factor graph consisting of four variables. Its energy
is written out to the right.

negative energies by Ē, i.e. Ē(y) := −E(y). Ē can also be thought of
as a score. Also, as sometimes instead of energy minimization we arescore
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interested in score maximization we use the same convention for the
factors θ̄(yc) = −θ(yc).

2.2.1 The Gibbs Distribution

Using the Gibbs distribution (also called the Boltzmann distribution) the
energy E(y) can be mapped to a distribution over output configurations
y:

P(y) =
1
Z

exp(Ē(y)) =
1
Z ∏

c∈C
exp(−θc(yc)). (2.2)

Here the partition function Z normalizes the distribution: partition function

Z = ∑
y∈Y

exp(Ē(y)).

In the general case the computation of the partition function is compu-
tationally intractable (Valiant 1979), as it sums over the exponentially
large set Y . It is one of the main computational bottlenecks for the
methods discussed in this thesis. Approximate evaluation of the parti-
tion function will be covered in more detail in Section 2.7. In the context inverse temperature

of the Gibbs distribution it is common to include an additional inverse
temperature parameter, β, into the exponent. The Gibbs distribution
then becomes

Pβ(y) =
1

Z(β)
exp(βĒ(y)). (2.3)

The inverse temperature controls the “peakedness” of the distribution.
For β → ∞, P(y|x,w) concentrates on the MAP labels. For β → 0, the
posterior becomes a completely uniform distribution assigning proba-
bility 1/|Y| to each output. This amplification behavior for increasing
values of β is illustrated in Figure 2.3.

2.2.2 Thermodynamic Potentials

The Gibbs distribution has many important properties, a few of which
are stated here. In the statistical physics literature some of these proper-
ties are introduced as relations between thermodynamic potentials, which
are scalar functions of the inverse temperature β. The free energy is a
scaled version of the logarithm of the partition function:

F(β) := − 1
β

log Z(β).
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Figure 2.3: Influence of the inverse temperature β on the Gibbs distri-
bution over 10 outcomes.

The free energy is related to the internal energy and the Shannon entropy
by the following identity

F(β) = EPβ(y)[E(y)]−
1
β

H(Pβ). (2.4)

Here the internal energy EPβ(y)[E(y)] is the average of the energy

EPβ(y)[E(y)] := ∑
y∈Y

Pβ(y)E(y),

and the Shannon entropy is

H(Pβ) := − ∑
y∈Y

Pβ(y) log Pβ(y).

The relation in (2.4) is central for many aspects of probabilistic inference
and therefore the simple derivation is given below.

Proof.

F(β) = ∑
y∈Y

Pβ(y)E(y) +
1
β ∑
y∈Y

Pβ(y) log Pβ(y)

= ∑
y∈Y

Pβ(y)

(
E(y) +

1
β

log Pβ(y)

)
= ∑
y∈Y

Pβ(y)

(
E(y)− 1

β
log Z(β)− E(y)

)
= − 1

β
log Z(β).

Which proves the relation.
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We will revisit the identity in (2.4) in Section 2.4, where a variational
formulation of the free energy is given in terms of a convex optimization
problem over the probabilities Pβ(y).

2.2.3 Pairwise Models

For many applications the models studied contain only factors con-
sisting of one or two output variables. The factor graph notation in
this case is an unnecessary complication and hence in this setting the
dependencies between random variables are often replaced by a stan-
dard graph G = (V , E). The potentials θi(yi) and θij(yi, yj) are used to
denote the cost of an assignment for a node i ∈ V and an edge (i, j) ∈ E ,
respectively. The energy of such a pairwise model is then written as

E(y) = ∑
i∈V

θi(yi) + ∑
(i,j)∈E

θij(yi, yj). (2.5)

Ising and Potts model
Figure 2.4 illustrates a model known as the Ising model in statistical

physics (Ising 1925). On the left a factor graph representation is depicted

Figure 2.4: A graphical illustration of the Ising model. Lattice graphs
are often also used in computer vision to balance a data fi-
delity term and the spatial smoothness between neighboring
pixels. Left: The model expressed as a factor graph. Right:
The same model as an undirected graphical model.

and on the right the model is shown as an undirected graphical model.
The Ising model describes the joint configuration y of so called spins
yi which can be in two states yi ∈ {−1, 1}. The underlying graph is
usually assumed to be a lattice, in this thesis also called the 4-connected
grid graph. The negative energy of the Ising model is then given by

Ē(y) = ∑
i∈V

yibi + ∑
(i,j)∈E

aijyiyj. (2.6)
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Here aij denotes the interaction strength for edge (i, j) and bi corre-
sponds to an external field favoring either positive or negative spins for
the i-th variable. Alternatively, the Ising model can also be written in
the notation of (2.5) with yi ∈ {0, 1} (which is adopted in the remainder)
by setting the unary potentials as θi(0) = bi, θi(1) = −bi and the binary
potential as θij(0, 0) = θij(1, 1) = −aij and θij(0, 1) = θij(1, 0) = aij.
This also paves the way for the extension of the Ising model to more
than two states, known as the Potts model (Potts 1952). The potentials
are called attractive if aij > 0, as the configuration in which neighboringattractive and

repulsive potentials variables take the same spin is preferred over those where the variables
assume different labels. If aij < 0, the potentials are referred to as
being repulsive. Figure 2.5 shows typical instances of the Ising model

Figure 2.5: Samples from the Ising model (2.6) for bi ∼ Uniform(−1, 1).
a is chosen the same for all edges. The top row corresponds
to a = 1, the middle row to a = 0.5 and the bottom row to
a repulsive setting with a = −1. We used Gibbs sampling
with 1000 sweeps, see Subsection 2.7.7.

for different choices of a and b. Most models studied in this thesis are
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pairwise models, we therefore write the models in terms of the pairwise
notation if possible.

2.2.4 Markov Random Fields

Factor graphs are a generalization of Markov Random Fields (MRFs).
The literature on MRFs is extensive (Hammersley and Clifford 1971;
Besag 1974; Geman and Geman 1984; Moussouris 1974). A full review
of all the MRF properties is beyond the scope of this chapter. For a good
overview, see for example (Winkler 2006, Chapter 3). Next we give a
sketch of the main result, the Hammersley-Clifford theorem.

As the name implies, one of the key aspects of MRFs are characterizing
independencies. Let us denote the neighbors of a variable i by N (i). For
a pairwise undirected graphical model this set consists of all the nodes
that share an edge with node i. For a factor graph the neighborhood
is defined as all the variables that share a factor with node i. The
set of neighboring variables is often called the Markov blanket. Let y\i Markov blanket

denote the set of all variables except the i-th variable. The local Markov
property states that for the conditional distribution of a variable given
its neighborhood, the following equality holds:

P(yi|y\i) = P(yi|yN (i)).

The Hammersley-Clifford theorem states that if a strictly positive distri-
bution satisfies the local Markov property with respect to a graph G,
then the distribution can be written as a MRF on G.

2.2.5 High-order Potentials

Traditionally, most work on MRFs and CRFs considered pairwise models.
In the related field of Bayesian networks modeling, the factors stud-
ied often have larger cardinalities, though usually still a factor only
depends on a small number of variables. Also, Bayesian networks often
contain far fewer variables than the MRF models used for example in
computer vision. The restriction to low-order models arises from two
reasons. First, the introduction of high-order factors, i.e., factors that
depend on many variables, comes at a massive increase in computa-
tional complexity due to the exponential explosion of the number of
possible states of the factors. A second related problem is the repre-
sentation of these factors: How can we efficiently describe the cost of
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the different configurations without exhaustively listing all the energy
configurations?

A recent line of research (Potetz 2007; Kohli, Kumar, and Torr 2009;
Rother et al. 2009; Stobbe and Krause 2010; Tarlow, Givoni, and Zemel
2010) has studied these problems and characterized a number of high-
order factors, e.g. factors that depend on all the variables in a model,
for which one can efficiently compute the MAP configuration. One
popular approach is to express a high-order factor in terms of an
additional auxiliary variable and low-order factors (Kohli and Kumar
2010). In binary MRFs with submodularity assumptions, this approach,
if applicable, often leads to an exact solution to the MAP problem. We
will give more details about this characterization of high-order factors
in Chapter 4. A second approach, leading to approximate MAP solutions,
but more generic, is given in (Tarlow, Givoni, and Zemel 2010). The
paper gives examples of high-order factors, for which the max-product
messages can be computed efficiently. These messages are used in an
approximate message-passing algorithm to infer the MAP labeling for
a model containing such high-order factors. See Section 2.7 for more
details about message-passing algorithms.

2.3 discriminative modeling

After having introduced graphical models and Bayesian decision theory,
we can now turn to the main problem addressed in this thesis. Struc-
tured output prediction considers the task of predicting outputs y for
given inputs x. The previous section assumed that the energy function
is known, this assumption is relaxed in the current section. We focus on
discriminative models, which can be thought of as a prediction function
f : X → Y as introduced in Section 2.1. It is important to point out
that generative models, which model the joint distribution P(y,x) of
input and output variables, are not studied here. Discriminative models
do not impose any assumptions on the generation of x, but only on
the conditional distribution of y given x (or possibly unnormalized
versions thereof). Therefore, we always make the assumption that the
input variables x are fully observed. The parametric form of the pre-
diction function, specified through a graphical model, is assumed to
be given. The parameters w of this model, however, are assumed to be
unknown and shall be learned from observed pairs of input and output
variables. The graphical models therefore contain two types of variables,
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the observed input variables and the unobserved output variables. Fur-
thermore, the energy depends on the parameters w of the model. As
we restrict ourselves to discriminative models, the dependency on x is
computationally inexpensive, as it is observed, we therefore often do
not specify the factorization on x explicitly. For the output variables on
the other hand, the energy is assumed to factorize according to:

E(y,x,w) = ∑
t∈T

∑
c∈C(t)

θc(yc,x,wt) (2.7)

Here we introduced another important concept, the factor template t, see
also (Sutton and Mccallum 2012). T denotes the set of all differently
parameterized factors. Each of its members t is a set of factors, sharing
the same parameter wt.

To illustrate the concept of a factor template in more detail let us
consider the simple Ising model again. We assume that for each variable
yi ∈ {−1, 1} we observe a noisy measurement of the spin, denoted by
xi ∈ [−1, 1]. The energy of an input/output configuration is modeled
as:

Ē(y,x, w) = ∑
i∈V

xiyi + w ∑
(i,j)∈E

yiyj. (2.8)

Here w denotes a scalar balancing the first and second term against
each other. The first term can be understood as data-fidelity term and
the second term as a smoothness term. A comparison to (2.7) shows
that T simply consists of the unary and the pairwise potentials. The
full factor graph is shown in Figure 2.6. In factor graphs and graphical
models, observed variables (or input variables) are shown as a gray
circle . These variables do not pose any computational problems for
inference, as they could alternatively always be included in the factors
themselves. Also, when writing an energy in the undirected graphical
model notation, we never include observed variables in the node set
V , despite the fact that we include these nodes for visualization in the
graphical model. The factor template notation also allows for more
complicated parametric forms, for example an Ising model where the
horizontal and the vertical edges are parameterized differently

Ē(y,x,w) = ∑
i∈V

xiyi + wh ∑
(i,j)∈Eh

yiyj + wv ∑
(i,j)∈Ev

yiyj. (2.9)

Here Ev denotes the vertical edges and Eh the horizontal edges.
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Figure 2.6: The Ising model with input and output variables. The color
of a factor node indicates its factor template. Left: The model
in (2.8). Here blue indicates the unary potentials and red
the pairwise potentials. Right: The model in (2.9) where red
indicates horizontal edge potentials and green the vertical
potentials.

A common assumption (Koller and Friedman 2009, Section 4.4.1.2) is
the linearity of the energy in the parameters. We shall also make this
assumption throughout this thesis. The linear dependence simplifies
the estimation of w considerably, as the most common estimation prin-
ciples, such as maximum likelihood, are convex or concave optimization
problems in this case. The parameterized negative energy of a factor
graph as in (2.7) can therefore be rewritten as

Ē(y,x,w) = 〈w,φ(x,y)〉 = ∑
t∈T

∑
c∈C(t)

〈wt,φt(x,yc, c)〉. (2.10)

Here the feature map or sufficient statistics φ(x,y) of the model denotessufficient statistics

a mapping from the input and output domain to a joint input/output
space employed with an inner product. In this thesis we assume the
joint feature map to be the Euclidean space, formally φ(x,y) : X ×Y →
RD. The mapping φ is application-dependent and is implicitly specified
by the graphical model and its parameterization. The right hand side
of (2.10) makes use of the underlying factorization and rewrites the
inner product in terms of parameters wt for each factor template and
corresponding feature maps φt. The feature map in this representation
takes an additional input c the factor index, so that the feature extraction
of x can be made factor dependent. Generally wt resides in a lower-
dimensional space than w, unless there is only one factor template.
One can either think of wt as a lower dimensional vector and w as
the concatenation of these lower dimensional vectors, or alternatively
consider wt to have the same dimension as w, but spanning only a
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2.4 exponential families

subspace with all dimensions that are not associated with the t-th
template set to zero. We adopt the latter view point as it simplifies the
notation. We use ŵt and φ̂t(x,yc, c) to indicate that the dimensions
not related to the t-th factor template were removed. Section 2.6 gives
a number of examples of the sufficient statistics φ(x,y) for different
tasks.

As before, the Gibbs distribution allows us to transform the energy
of an output variable to the probability of an output variable. The
important fact is that for a discriminative modeling approach one uses
the conditional Gibbs distribution of an output variable given an input
variable:

P(y|x,w) =
1

Z(x,w)
exp(βĒ(y,x,w)). (2.11)

The difference between a conditional Gibbs distribution and a joint
Gibbs distribution over x and y is only in the form of the partition
function. For the joint distribution the partition function no longer de-
pends on x, as it is marginalized out. Therefore, depending on the exact
dependence of the energy on x, the computation of its corresponding
partition function becomes much more difficult.

We will refer to a discriminative model of the form (2.11) as a Con-
ditional Random Field (CRF) (Lafferty, McCallum, and Pereira 2001),
even if the conditional probability in (2.11) is not an accurate estimation
the true data generating posterior. Therefore the structured Support
Vector Machine (SVM), which will be discussed in Subsection 2.5.2 is
also considered a CRF model, simply with a different learning approach.
The key difference of the CRF to the more classic MRF is the conditioning
on the input variables x, which in some applications lead to dramatic
improvements in the prediction accuracy, as more complex and expres-
sive features can be constructed (Lafferty, McCallum, and Pereira 2001;
Mccallum, Freitag, and Pereira 2000).

2.4 exponential families

This section introduces exponential family distributions and identifies
the Gibbs distribution with the energy in (2.10) as a specific choice
of an exponential family distribution. First, we however introduce a
reparameterization of the energy. While the formulation of the energy
in (2.10) is convenient for parameter estimation as it reveals the linear
dependence on the parameters w, for prediction an alternative, over-
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complete representation is usually more insightful. Let use define the
mapping ϕ(y) : Y → RL which corresponds to a sufficient statistics
of the output variables 2. Using indicator variables each possible as-
signment for every factor in the factor graph is encoded. Hence, for a
pairwise graphical model where each variable can assume K different
values, L = K|V|+ K2|E |. The sufficient statistics corresponding to the
nodes are given by

ϕi;k(y) = Ik(yi),

and the ones corresponding to the edges by

ϕij;kl(y) = Ik,l(yi, yj).

Here Ik,l(yi, yj) returns one when yi = k and yj = l, and zero other-
wise. These sufficient statistics are consequently concatenated to give
ϕ(y). For models that include higher-order factors, similar statistics for
these potentials need to be included. The full negative energy of an in-
put/output configuration can then be written as a bilinear mapping in
the parameters w ∈ RD and the overcomplete output variables feature
map ϕ(y) ∈ RL:

Ē(y,x,w) = 〈w,φ(x,y)〉 = wTΥ(x)ϕ(y). (2.12)

Here Υ(x) ∈ RD×L copies the extracted features to the corresponding
position according to φ(x,y). Such a matrix Υ(x) always exists. The
joint input/output sufficient statistics φ(x,y) can thus be related to
Υ(x) and ϕ(y) by

φ(x,y) = Υ(x)ϕ(y).

Furthermore, it is often convenient to define a short-hand for the nega-
tive costs vector

θ̄(x) =
(
wTΥ(x)

)T
.

Again we use a bar to indicate that the interpretation is as a negative
energy. For inference often the dependence of θ̄(x) on the input vari-
ables x is discarded, which we shall also do here. The formulation of
the negative energy through the bilinear mapping in (2.12) allows us
to include the conditioned variables x either in the cost parameters
θ̄(x) or in the sufficient statistics φ(x,y), depending on what is more

2 Note that the previously introduced sufficient statistics φ(x,y) is dependent on both
the input and the output variables. Whereas ϕ(y) is only a sufficient statistics of the
output variables.
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2.4 exponential families

convenient. Generally D � L as otherwise learning w from data is an
ill-specified problem, for example for the Ising model in (2.8), D = 1
whereas L = 2|V|+ 4|E |.

We now turn to a discussion of exponential family models, sometimes
also called log-linear models in the statistics literature. In our discussion
we assume that observed variables x are already integrated into the
parameters θ̄ by the construction above. An exponential family model
has the form

P(y|θ̄) = exp(〈θ̄,ϕ(y)〉 − A(θ̄)), (2.13)

where the logarithm of the partition function is denoted by

A(θ̄) := log ∑
y∈Y

exp(〈θ̄,ϕ(y)〉).

θ̄ are then referred to as the canonical parameters of the distribution
and are assumed to have some associated domain θ̄ ∈ Ω. Often we
will assume Ω = RL, but sometimes certain modeling constraints will
be expressed by restricting the domain Ω. The formulation of the ex-
ponential family model above is kept simple on purpose. Exponential
family distributions are more general and for example also allow for
continuous y. For our discussion the form in (2.13) is however sufficient.
Comparing (2.13) and (2.3) it is clear that the Gibbs distribution for an
energy that is linear in w, is also an exponential family model. Addi-
tionally, the same relation also holds for θ̄ as the canoncial parameters.
Note that the inverse temperature parameter β is here absorbed into
θ̄. The exponential family distributions have a number of desirable
properties which are summarized below. The statements are given in
terms of θ̄ but also hold for w in slightly modified form. For proofs see
for example (Wainwright and Jordan 2008, Proposition 3.1).

• The first two derivatives of the log partition function yield the
moments of the random variable ϕ(y):

∂A
∂θ̄

= Eθ̄[ϕ(y)] := ∑
y

P(y|θ̄)ϕ(y).

∂2A
∂θ̄2 = Covθ̄[ϕ(y)] := Eθ̄[ϕ(y)ϕ(y)

T]−Eθ̄[ϕ(y)]Eθ̄[ϕ(y)]
T.

• A(θ̄) is a convex function of θ̄ on its domain Ω. This property fol-
lows directly from the positive semidefiniteness of the covariance
matrix.

23



background

Convex analysis provides us with an extremely powerful tool for study-
ing A(θ̄) through its conjugate dual, sometimes also called the Legendre-conjugate dual

Fenchel transformation. The conjugate dual A∗(µ) of the log partition
function is given by

A∗(µ) = sup
θ̄∈Ω
{〈µ, θ̄〉 − A(θ̄)}. (2.14)

Notice that (2.14) is now a function of the dual variables µ. It will turn
out that µ has a particularly nice interpretation and coincides with
the marginals (or sometimes also mean parameters) of P(y|θ̄). Let us
introduce the constraint setM, called the marginal polytope and definedmarginal polytope

as the marginals of the factors corresponding to a valid distribution
P(y|θ̄):

M = {µ | ∃P(y|θ̄) with marginals µ} . (2.15)

For a pairwise graphical model G = (V , E) the condition on valid
marginals can be written as follows:{

P(yi) = µi(yi) ∀i ∈ V , ∀yi ∈ Yi
P(yi, yj) = µij(yi, yj) ∀(i, j) ∈ E , ∀yi ∈ Yi, ∀yj ∈ Yj

}
.

For higher-order factors additional conditions would need to be in-
cluded to ensure consistency for these marginals. The dimensionality
of µ is the same as θ̄ and ϕ(y). As pointed out in (Wainwright and
Jordan 2008, Section 3.4), (2.14) can also be understood as an alterna-
tive parametrization of the distribution P(y|θ̄) through the marginals
instead of the canonical parameters θ̄. A standard result recovers the
negative Shannon entropy as the conjugate dual function of the log
partition function, subject to the constraint that the marginals arise from
a valid distribution:

A∗(µ) =

{
−H(P(y|θ̄(µ))) if µ ∈ M
+∞ otherwise.

It is important to note that the entropy above is not explicitly formulated
in terms of µ, but rather in terms of the distribution P(y|θ̄) associated
with the marginals. We use θ̄(µ) to denote the parameters that satisfy
this relation:

Eθ̄(µ)[ϕ(y)] = ∇A(θ̄(µ)) = µ.
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2.5 learning

Using convex analysis the log partition function can be rewritten as a
convex optimization problem over the marginal polytopeM:

A(θ̄) = sup
µ∈M
{〈θ̄,µ〉 − A∗(µ)}

= sup
µ∈M
{〈θ̄,µ〉+ H(P(y|θ̄(µ)))}. (2.16)

A similar formulation was given in (2.4), the key difference here is that
it recasts the problem of computing the marginals and the partition
function as a convex optimization problem. There are two major prob-
lems with the optimization problem in (2.16). First, the constraint set
M is complicated (exponential in size). Second, the Shannon entropy
is generally not explicitly expressible in µ, but rather implicitly in the
distribution P(y|θ̄) associated with the marginal vector. Hence, one
can in general not rewrite the entropy as a sum of unary and pairwise
entropy terms, which would simplify the problem substantially. For
the special case of a tree, such a factorization of the entropy however
exists, see Subsection 2.7.2. Approximations of the constraint set and
the entropy lead to efficient variational inference approaches which are
discussed in Subsection 2.7.4 and Subsection 2.7.5. Finally, to give an
intuition about conjugate duality, Figure 2.7 illustrates how the function
log(x) can be reexpressed as a maximization problem over simple linear
functions.

2.5 learning

We study the parameter estimation problem, or equivalently learning,
from the point of Empirical Risk Minimization (ERM) (Vapnik 1995). ERM empirical risk

minimizationis defined w.r.t. a given data set {(xn,yn)}N
n=1

3 and a loss function
`(w,x,y). Often the loss is a convex surrogate function of the true
loss function ∆ introduced in the section on Bayesian decision theory.
The need for replacing the true loss by a surrogate convex loss arises surrogate loss

from the fact that the true loss is difficult to optimize for as it leads to a
non-convex optimization problem. We briefly discuss direct loss mini-
mization in Section 5.7. For parameter estimation it is often advisable to
include a regularization term Ω(w) which prevents overfitting. ERM in

3 Note that we use the sup-index notation to refer to an index rather than to the
exponentiation.
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Figure 2.7: Idealized illustration of the Legendre-Fenchel transforma-
tion for the convex function − log(x). Through its conjugate
dual, the negative logarithm can be rewritten as a maximiza-
tion problem over linear functions (dashed lines).

these settings can be written as the following optimization problem for
choosing the parameter w:

w? = argmin
w

1
N

N

∑
n=1

`(w,xn,yn) + λΩ(w). (2.17)

Here λ ∈ R+ denotes the weight of the regularizer. For the regulariza-regularization

tion we usually assume an L1 or L2
2 norm, i.e. |w| or 1

2‖w‖2
2 as they

both lead to convex optimization problems (assuming the surrogate
loss is convex). More generally the Lp norm can be used4. For a vector
a ∈ RD and p ≥ 1 the p-norm is defined as

‖a‖p :=

(
D

∑
d=1
|ad|p

)1/p

.

Figure 2.8 visualizes the Lp-norm for different values of p. Next, we
introduce the two most popular surrogate losses for structured outputs
and their extensions to scenarios where a subset of the output variables

4 When employing the Lp-norm in a learning algorithm, often the exponentiated form
Lp

p is considered as it is easier to compute.
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2.5 learning

is unobserved. A unifying theory linking these two approaches is
presented in Chapter 5.
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Figure 2.8: Lp for different values of p in the two-dimensional case.
For large values of p the Lp-norm eventually becomes the
maximum-norm, taking the value of the maximum element.

2.5.1 Maximum Likelihood Learning

The Conditional Random Field (CRF) (Lafferty, McCallum, and Pereira
2001) initially proposed for natural language processing applications Conditional Random

Fieldis a popular model for structured data. The conditional distribution
of outputs given inputs is modeled using the Gibbs distribution as
in (2.11). Learning then consists of maximizing the likelihood

w? = argmax
w

(
N

∏
n=1

P(yn|xn,w)

)1/N

. (2.18)

This is equivalent to minimizing the negative log-likelihood and hence
the surrogate loss in the ERM framework is given by

`ll(w,x,y) := − log P(y|x,w) = −〈w,φ(x,y)〉+ log Z(x,w).

In general, ERM for the log-likelihood does not have a closed-form
solution and hence in practice numerical solvers are used. These solvers
rely on derivatives computations for efficiently solving the minimization
problem. The derivative of the loss w.r.t. the parameters w is given by

∂`ll(w,x,y)
∂w

= −φ(x,y) + EP(y′|x,w)[φ(x,y′)]. (2.19)

Here the second part of the gradient denotes the expectation of the
feature map w.r.t. the Gibbs distribution. The expected feature map
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follows from the property that for an exponential family distribution
the derivatives of the partition function generate all the moments of
the sufficient statistics, see Section 2.4. The expectation computation
factorizes over the individual factors and requires the marginals thereof:

EP(y′|x,w)[φ(x,y′)] = ∑
t∈T

∑
c∈C(t)

∑
y′c

P(y′c|x,w)φt(x,y′c, c).

In most cases the second derivative is not used for the numerical
optimization due to its size being quadratic in the dimension of the
sufficient statistics. Thanks to the moment generating property of
exponential families the second derivative is simply

∂2`ll(w,x,y)
∂w2 = CovP(y′|x,w)[φ(x,y′)].

As the covariance is always positive semidefinite it readily follows
that ERM with the log-loss is a convex minimization problem. Maximum
likelihood learning with the L1- or the L2

2-norm as a regularizer can
also be understood as MAP parameter estimation with a Laplacian or a
Gaussian prior distribution, respectively.

Alternatively, maximum likelihood estimation in CRFs also has an
interpretation as an entropy maximization under the constraint that the
expected sufficient statistics under the model P(y|x,w) match the
observed statistics. For a dataset {(xn,yn)}, the (non-regularized)
maximum likelihood objective can be written as

min
w

N

∑
n=1

`ll(w,xn,yn) = min
w
−

N

∑
n=1
〈w,φ(xn,yn)〉+

N

∑
n=1

log Z(xn,w).

By conjugate duality this can be rewritten as an entropy maximization
under a constraint on the expected feature map:

max
µ1,...,µn∈M×...×M

N

∑
n=1

H(P(y|θ̄(xn,µn)))

s.t.
N

∑
n=1

P(y|θ̄(xn,µn))φ(xn,y) =
N

∑
n=1

φ(xn,yn).

For the numerical minimization of ERM with the log-loss and an L2

regularization, the limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) algorithm (Liu and Nocedal 1989; Nocedal and Wright 1999), a
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quasi-Newton method which approximates the Hessian, is most often
used in practice. Historically, sometimes also the Conjugate Gradient
method (Shewchuk 1994) has been used. If a L1 regularization is desired,
then the Orthant-Wise Limited-memory Quasi-Newton (OWL-QN) (An-
drew and Gao 2007), a quasi-Newton solver specifically designed to
handle the non-differentiable L1 regularizer was shown to lead to good
convergence properties and also several open-source implementations
are available by now. Another popular solver, especially for large
training data sets, is stochastic gradient descent (Robbins and Monro
1951; Kiefer and Wolfowitz 1952). It is applicable to L1 as well as L2

regularization.
For some models, either due to the measurement process or be-

cause of modeling assumptions it can happen that some of the output
variables are unobserved. The Hidden Conditional Random Field
(HCRF) (Quattoni et al. 2007) is an extension of the CRF to models where
in training some of the output variables are hidden or unobserved.
Unobserved variables are sometimes also referred to as latent variables. hidden variables

We will denote the hidden variables by z ∈ Z . Again we follow the
convention of using a subscript zi ∈ Zi to index the i-th hidden vari-
able. The HCRF models the joint conditional distribution of the hidden
variables z and the output variables y given the input variables:

P(y, z|x,w) =
1

Z(x,w)
exp(〈w,φ(x,y, z)〉).

The partition function now also sums over the states of z:

Z(x,w) = ∑
y∈Y ,z∈Z

exp(〈w,φ(x,y, z)〉).

Moreover, the feature map is extended to also incorporate the hidden
variables z. For computing the posterior distribution of an output
variables configuration, the hidden variables need to be marginalized
out, to obtain

P(y|x,w) =
1

Z(x,w) ∑
z∈Z

exp(〈w,φ(x,y, z)〉).

As for the CRF, learning then consists of maximizing the likelihood
of the output variables given the input variables. Taking the negative
logarithm to transfer the problem into an easier minimization problem,
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we obtain the log-likelihood loss extended to partially unobserved
domains

`ll(w,x,y) = − log ∑
z∈Z

exp(〈w,φ(x,y, z)〉) + log Z(x,w). (2.20)

The first term can be understood as a restricted partition function where
only hidden variables are summed over, whereas the second term sums
over both output variables and hidden variables. The loss in (2.20) is no
longer convex, as the first term is concave, but not convex. Therefore,
in the general case, even if we could compute the partition functions,
one can only hope to find a local minimizer.

2.5.2 Maximum Margin Learning

The structured SVM (Tsochantaridis et al. 2005; Taskar, Guestrin, and
Koller 2003) , sometimes also called maximum margin Markov network,structured Support

Vector Machine can be understood as a non-probabilistic analogue to the CRF. Instead
of estimating a distribution P(y|x,w) of outputs for a given input, the
predictor itself is learned. The structured SVM considers a prediction
function of the form

f (x) := argmax
y∈Y

〈w,φ(x,y)〉. (2.21)

Prediction can be seen as a MAP estimate, where the parametersw might
however not represent a meaningful posterior distribution. Learning of
w directly trains with the prediction rule in (2.21) in mind. As in the
standard binary SVM the classifier is trained such that it maximizes the
margin between the ground-truth and any other output. The structured
SVM is usually written as a Quadratic Program (QP):

min
w,ξ

λ

2
‖w‖2

2 +
1
N

N

∑
n=1

ξn (2.22)

s.t. 〈w,φ(xn,yn)〉 − 〈w,φ(xn,y)〉 ≥ ∆yn(y)− ξn ∀y, ∀n.

Here ξn is a slack variable . The constraint says that we want all the
outputs y to have at least a distance of ∆yn(y) from the ground-truth
yn5. An equivalent formulation to (2.22) is obtained when replacing

5 Note, that by definition ∆yn (yn) = 0 and therefore the ground-truth case does not
need to be handled specially.
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the margin constraint for all outputs by the constraint that has the
maximum violation:

min
w,ξ

λ

2
‖w‖2

2 +
1
N

N

∑
n=1

ξn (2.23)

s.t. − 〈w,φ(xn,yn)〉+ max
y

[〈w,φ(xn,y)〉+ ∆yn(y)] ≤ ξn ∀n.

This formulation immediately gives rise to the cutting-plane algorithm, cutting-plane
algorithman alternating procedure in which the QP is solved for a current set

of constraints. The constraint set is then augmented with the most
violated constraint for the current estimate of w. This algorithm is
listed in Algorithm 2.1. Line 5 in Algorithm 2.1 corresponds to the

Algorithm 2.1 Cutting-plane algorithm (Finley and Joachims 2008).

Require: (x1,y1), . . . , (xN ,yN), λ, ε, ∆y∗(· ).
1: Sn ← ∅ for n = 1, . . . , N.
2: repeat
3: for n = 1, . . . , N do
4: H(y):= ∆yn(y)+ 〈w,φ(xn,y)−φ(xn,yn)〉
5: compute ŷ = argmaxy∈Y H(y)

6: compute ξn = max{0, maxy∈Sn H(y)}
7: if H(ŷ) > ξn + ε then
8: Sn ← Sn ∪ {ŷ}
9: w ← optimize primal over

⋃
n Sn

10: end if
11: end for
12: until no Sn has changed during iteration

loss augmented inference step . The output variable with the maximum
score needs to be found. Note that, the linear score of the model is
augmented with the loss term. Depending on the loss term this might
render the original problem more difficult. Chapter 4 will discuss the
loss augmented inference in more detail. The structured SVM in (2.22)
rescales the margin by the loss term and is therefore called the margin
rescaled structured SVM. There also exist the slack rescaled version of the margin and slack

rescalingstructured SVM, which is covered in Chapter 5.
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The structured SVM can be understood as employing the maximum
margin loss in the ERM framework. The maximum margin loss is given
by

`mm(w,x,y):=−〈w,φ(x,y)〉+max
y′∈Y

[
〈w,φ(x,y′)〉+ ∆y(y′)

]
. (2.24)

As for the CRF, there also exists an extension of the structured SVM to
hidden variables scenarios. The corresponding classifier is then referred
to as the latent structured SVM (Felzenszwalb, McAllester, and Ramananlatent structured SVM

2008; Yu and Joachims 2009; Felzenszwalb et al. 2010). The prediction
rule in (2.21) becomes

f (x) = argmax
y∈Y

max
z∈Z
〈w,φ(x,y, z)〉.

Furthermore, the maximum margin loss for learning becomes

`mm(w,x,y) = −max
z∈Z
〈w,φ(x,y, z)〉+

max
y′∈Y
z∈Z

[
〈w,φ(x,y′, z)〉+ ∆y(y′)

]
. (2.25)

As for the HCRF, ERM with the maximum margin loss in a partially
unobserved scenario leads to a non-convex optimization problem.

2.5.3 Comparison of CRF and Structured SVM

Figure 2.9 contrasts the two learning and prediction approaches, with
CRF and Minimum Bayes Risk prediction on the one hand and struc-
tured SVM learning and MAP prediction on the other hand. A much
more in-depth discussion is given in Chapter 5.

2.6 structured models

This section moves away from the abstract feature map φ(x,y) view
point taken in the previous sections and gives concrete instantiations
of φ(x,y) for many important applications of machine learning. We
generally state the simplest possible model for a particular task which
still illustrates the important concepts. Therefore we usually do not
model any data dependence for the pairwise interactions, although this
would be a straightforward extension. A reader who is already familiar
with the joint input/output feature map φ(x,y) can safely skip this
section, as it does not introduce any new notation.
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Figure 2.9: The two learning and prediction approaches. Top: The clas-
sical approach first estimates a posterior P(y|x,w?) from
training data and incorporates the loss ∆ at test-time to
infer the optimal label. Bottom: The alternative approach
directly trains a classifier for a specific loss and skips the
distributional estimation step.

2.6.1 Binary Classification

Binary classification is probably the best studied problem in machine
learning. As we will show, modern, yet simple algorithms such as
the SVM (Boser, Guyon, and Vapnik 1992; Cortes and Vapnik 1995) or
logistic regression can be understood in the framework introduced so
far. For y ∈ {−1, 1} the sufficient statistics can simply be chosen as

φ(x, y) =
1
2

yφ(x).

Here φ(x) is the standard mapping known from the support vector
machines literature from the original input spaces to a possibly much
higher-dimensional space. Alternatively, it can be thought of as a suf-
ficient statistics of the data. For the zero-one loss ∆y?(y) = 1− Iy?(y),
maximum-margin learning according to (2.24) with φ(x, y) is equiva-
lent to the standard SVM formulation: Elementary calculations show
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that the Hinge loss max(0, 1− 〈w, yφ(x)〉) is obtained. On the other
hand, if the logarithmic loss is used, the logistic regression approach
is identified. This can be checked as follows; let us denote the inner
product by sy = 〈w, 1

2 yφ(x)〉, the posteriori is then given by

P(y|x,w) =
exp(sy)

exp(sy) + exp(−sy)

=
1

1 + exp(−〈w, yφ(x)〉) .

This is equivalent to the standard definition of logistic regression. The
approach above does not have a bias term b, usually present in the SVM

formulation. A bias term can be included by adding a constant, say
1, to the sufficient statistics φ(x). The corresponding element in the
parameter vector w can then be thought of as the bias term. This is a
standard approach, sometimes referred to as representing the data in
a homogeneous coordinate system. There is one technical difficulty with
this approach though, as the parameter also incurs regularization costs,
which is generally not desirable for the bias term and not done for b in
the standard binary SVM.

2.6.2 Multiclass Classification

As for the binary classification setting, let us assume we are given
a data point x and a corresponding sufficient statistics φ(x) ∈ RD̄.
Further, the output variable y is a categorical variable taking values
in {1, . . . , K}, which one aims to predict. The joint sufficient statistics
between input and output variables is then

φ(x, y) =

I2(y)φ(x)
...

IK(y)φ(x)

 . (2.26)

The joint sufficient statistics φ(y,x) therefore has dimensionality D̄· (K−
1), where D̄ is the dimensionality of the data sufficient statistics φ(x).
For the feature map in (2.26), the log-likelihood and max-margin learn-
ing approach lead to the multiclass extensions of logistic regression and
the SVM (Crammer and Singer 2002). For the SVM there exist several
multiclass extensions, such as one-versus-all or one-versus-one, but the
extension by Crammer and Singer (2002) is generally considered the
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most sound one. In (Crammer and Singer 2002), the standard zero-one
loss is used for ∆y?(y). In case some similarity between the classes ex-
ists, one can include this information through the loss term. Note that
the multiclass SVM in (Crammer and Singer 2002) has D̄·K parameters
instead of the D̄· (K − 1) parameters in the formulation here. It can
be easily checked that one class can just be assumed to have an inner
product of zero without changing the expressivity of the classifier. This
is similar to the binary case where the parameter space is D̄ and not
2D̄.

2.6.3 Multilabel Classification

A related problem to multiclass classification is multilabel classifica-
tion (Tsoumakas and Katakis 2007). A data point x can assume several
classes at the same time. Here we denote the number of classes by |V|.
Formally, the label vector y ∈ {−1, 1}|V| encodes whether each of the
labels is absent or present. Hence, the number of possible outputs for
an input is 2|V|. A simple model that incorporates the pairwise label
co-occurrence is discussed in (Finley and Joachims 2008). Figure 2.10
visualizes the model as a graphical model. The co-occurrence informa-
tion is modeled by edges in a fully connected graph over |V| nodes.
The multilabel classification model can be summarized by a sufficient

y1

y2

y3

y4

y5

x

Figure 2.10: Pairwise graphical model for multi-label classification.
Here for five possible labels.

statistics φ(x,y) ∈ RD̄·|V|+3·|E | as follows:

φ(x,y) = ∑
i∈V

1
2
φi(x)yi + ∑

(i,j)∈E
φij(yi, yj).
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Here φi(x) is given by φ(x) ∈ RD̄ copied to the i-th D̄-dimensional
block of φ(x,y). φij(yi, yj) simply encodes in which of the four possible
states the edge (i, j) is. Each edge is associated with three entries6 in
the full sufficient statistics, which are set according to the state of the
edge. For a one-dimensional φ(x) = x and two possible labels, the
sufficient statistics for two example configurations are given as follows:

φ(0.5, [−1,+1]) =


−0.5
0.5
0
1
0

 , φ(0.1, [−1,−1]) =


−0.1
−0.1

0
0
0

 .

Unlike in the binary and multiclass examples before, here the output
variable y is multivariate and there exist dependencies among the
individual yi. As we will see, even though these dependencies lead to
better predictions when compared with independent predictions, they
render inference computations more difficult.

2.6.4 Segmentation

Segmentation is probably the most well-studied application of struc-
tured output prediction. In this thesis we will restrict ourselves to
segmentation models for computer vision, but the models are equally
important in other application domains, such as natural language
processing. As an example we will study semantic segmentation, some-
times also called object recognition, which is considered an important
intermediate step for high-level visual reasoning. The problem setup
and task are illustrated in Figure 2.11. Many of the state-of-the-art
methods (Ladicky et al. 2010; Rabinovich et al. 2007; Shotton et al.
2009) in computer vision are based on the same basic model, which
is an extension of the discriminative Ising and Potts model discussed
in Section 2.3. Also, the segmentation models share similarity to the
multi-label classification model, with two notable differences. First, all

6 One out of the four states does not need to be explicitly considered in the sufficient
statistics. This is similar to the multiclass model above: the energy can always be offset
so that one of the states’ contribution to the energy is zero.
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grass

bicycle

road
void

Figure 2.11: Semantic segmentation on the Microsoft Research Cam-
bridge (MSRC) dataset. Left: input image x. Middle: seg-
mentation y of the image. Right: Different colors encode
different object categories.

the vertices and nodes are parameterized in the same way sharing the
same parameters. Secondly, the graph is much sparser connected7.

Formally let y ∈ {1, . . . , K}|V| be the segmentation of an image,
where |V| is equal to the number of pixels and K denotes the number
of classes. The basic model consists of unary and pairwise terms, and
the graph G = (V , E) is given by the 4- or 8-connected grid, which
was already discussed earlier in the context of the Ising model. The
sufficient statistics is

φ(x,y) = ∑
i∈V
φu(x, yi, i) + ∑

(i,j)∈E
φp(yi, yj).

The unary sufficient statistics are similar to the multiclass case above,
except that the features φ(x, i) for the i-th pixel are extracted in a
neighborhood around pixel i from the image x.

φ̂u(x, yi, i) =

I2(yi)φ(x, i)
...

IK(yi)φ(x, i)

 .

For the features φ(x, i), popular choices are color or gradient-based
features such as the Histogram of Oriented Gradients (HOG) or the Scale-
invariant feature transform (SIFT). Another choice is to use the class
conditional probabilities from an already trained multiclass classifier,
such as TextonBoost (Shotton et al. 2009), see e.g. (Ladicky 2011, Section

7 A recent exception is given in (Krähenbühl and Koltun 2011), where every pixel in an
image is connected to all other pixels.
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2.5.2) for more details. The pairwise sufficient statistics capture the
K2− 1 co-occurrence statistics of class labels between neighboring pixels
i and j

φ̂p(yi, yj) =



I1,2(yi, yj)

I1,3(yi, yj)
...

I2,1(yi, yj)
...

IK,K(yi, yj)


.

2.6.5 Ranking

The ranking problem is as follows: Given a set of |V| items, a user is
asked to rank them according to his preferences. Ranking has wide-
spread applications in information retrieval, where for example the
results to a search query need to be returned to a user and sorted
according to his preferences. Most often there is some knowledge about
the user/query available, which is assumed to be encoded through
the input variable x. Moreover, some (possibly only partially labeled)
training dataset of inputs and corresponding rankings is given. In
the literature this problem is known as learning to rank (Liu 2009). We
here discuss a structured model similar to (Xu et al. 2008). Let yi ∈
{1, . . . , |V|} denote the rank of the i-th item. The “ranking constraint”,
which says that y is a permutation of 1 to |V|, can be expressed by a
fully connected graphical model, with each edge (i, j) ensuring that
yi 6= yj. The sufficient statistics has therefore the form

φ(x,y) = ∑
i∈V
φi(x, yi) + ∑

(i,j)∈E
φij(yi, yj).

The unary sufficient statistics is the same as in the multiclass case and
the pairwise sufficient statistics is defined by

φ̂ij(yi, yj) =

[
I[yi>yj](yi, yj)

I[yi=yj](yi, yj)

]
.

Here we extended the indicator function to more general Boolean
expressions, rather than simply checking for equality. The parameters
corresponding to the equality part should be set to −∞, in order to
ensure that the labeling is a valid ranking.
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2.6.6 Multiple-Instance Learning

Multiple-Instance Learning has initially been proposed in the 1990s (Di-
etterich, Lathrop, and Lozano-Pérez 1997; Auer 1997; Long and Tan
1998). In particular, two large-margin approaches have been introduced
in (Andrews, Tsochantaridis, and Hofmann 2002), which we shall focus
on here. Variants of the multiple-instance SVMs have recently been redis-
covered in the context of latent SVMs in computer vision (Felzenszwalb
et al. 2010). The basic setting in multiple-instance learning is as follows:
We are given a bag of data points {xi}I

i=1 for which a label y ∈ {−1, 1} bag

is provided in training. The important difference to standard super-
vised learning is the fact that the label is given for the whole bag, but
not for the individual instances in a bag. The semantic meaning of the
bag-level label is: If y = 1, then at least one of the instances in the bag
is positive, if y = −1 then all the instances are negative. In this sense
the information provided by the label is asymmetric, as a negative label
implicitly reveals the individual labels for all the instances in the bag,
whereas a positive label only reveals the information that at least one
instance has a positive label. Even though the models in (Andrews,
Tsochantaridis, and Hofmann 2002) were initially not described in the
structured output notation, we will show here that they can be under-
stood as structured output models with hidden variables. (Andrews,
Tsochantaridis, and Hofmann 2002) introduced two models, mi-SVM and
MI-SVM, each with a slightly different point of view on the problem.
Next, these multiple-instance models are given in our notation. Here
φu(xi) will denote the sufficient statistics of the i-th instance.

microscopic multiple-instance svm The mi-SVM8 takes a mi-
croscopic approach and assigns to each individual instance in the bag a mi-SVM

label. The bag label is positive if there is at least one positive instance
label in the bag. As the instance level labels are never observed, these
are modeled as hidden or latent variables zi ∈ {−1, 1}I . The graphical
model is given in Figure 2.12. The sufficient statistics is

φ(x, y, z) = φ(y, z) +
I

∑
i=1
φu(xi)zi.

8 The form of the mi-SVM presented here is slightly different than the original one in
the way that the margin is enforced. In the formulation here there is only one margin
term for all instances in a bag, whereas the original formulation has one margin term
for each instance.

39



background

φ(y, z) takes care of the multiple-instance constraint. If one of the
hidden labels is active, then also y is positive:

φ̂(y, z) =

[
I
[y=1∧∑I

i=1
zi+1

2 <1]
(y, z)

I
[y=0∧∑I

i=1
zi+1

2 ≥1]
(y, z)

]
Therefore the corresponding parameters should be −∞ to exclude in-
valid configurations. If we wish to apply the structured SVM framework

x1 x2 x3

z1 z2 z3

y

Figure 2.12: Graphical model for the mi-SVM.

to the mi-SVM model, we need to solve two problems, which turn out to
be efficiently tractable:

1. Predict the hidden variables for a known bag label y

z = argmax
z
〈w,φ(x, y, z)〉.

For the case y = −1 this is easy, as this implies z = −1. For the
case y = 1, one can predict the individual labels of the instances
independently by zi = argmaxzi

〈w,φu(xi, zi)〉. In case this leads
to no positive instance label, the instance with the largest score is
set to 1.

2. Prediction and loss-augmented inference

y, z = argmax
y,z

[〈w,φ(x, y, z)〉+ ∆yn(y)].

Standard prediction is obtained as a special case by setting the
loss term to zero. One can again predict the instance labels inde-
pendently, and in case all labels are negative, the most positive

40



2.7 exact and approximate inference

instance is set to 1. The score of the obtained positive solution
is then compared to the solution where all labels are negative.
Finally, the solution with the larger score is returned.

macroscopic multiple-instance svm The MI-SVM takes a mac-
roscopic approach and identifies a witness, an instance that is “the
most positive”, and uses the large-margin approach for this single
instance. The concept of the witness is formalized through a single MI-SVM

hidden variable z ∈ {1, . . . , I}, which denotes the index of the witness
instance. The sufficient statistics is given by (2.27) and the graphical
model is shown in Figure 2.13.

φ(x, y, z) = y
I

∑
i=1
φ(xi)Ii(z) (2.27)

x1 x2 x3

z y

Figure 2.13: Graphical model for the MI-SVM.

Extensions of the binary multiple-instance models given here to
settings where the label of a bag is multiclass or a multilabel are
relatively straightforward, as the same ideas as in Subsection 2.6.2 and
Subsection 2.6.2 can be used.

2.7 exact and approximate inference

So far we assumed black-box procedures for computing the MAP con-
figuration or the partition function. In the current section we introduce
exact and approximate algorithms for performing these tasks. We will
drop the dependence of the Gibbs distribution on the parameters w
as well as on the input variable x. w and x are assumed to be fixed
and therefore it is more convenient to think about a setting where the
potentials are given explicitly rather then implicitly through w and x.
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Also, we restrict ourselves to a discussion of pairwise models, hence
we study energies of the form (2.5):

E(y) = ∑
i∈V

θi(yi) + ∑
(i,j)∈E

θij(yi, yj).

Inference in graphical models can refer to different tasks, all of them
generally suffering from the same problem: A maximization and/or
integration over an exponentially large set has to be carried out. The
most common questions that are summarized under the umbrella of
inference in graphical models are:

• Finding the Maximum-A-Posteriori (MAP) label. For Gibbs distri-Maximum-A-
Posteriori butions of the form as in (2.11), which we study in this thesis, the

computation reduces to an energy minimization:

y? = argmax
y∈Y

P(y) = argmin
y∈Y

E(y).

The term MAP implies that the distribution should be thought
of as a valid posterior. The concept of energy minimization is
more general and also valid if E(y) does not necessarily represent
a meaningful posterior. Therefore, nowadays the energy mini-
mization problem is often referred to as finding the Most Probable
Explanation (MPE) . We shall also adopt this convention here. Themost probable

explanation MPE problem is ubiquitous in graphical models. It for example
arises when computing the prediction for a CRF or when solving
the loss-augmented inference problem in the structured SVM.

• The computation of the partition function Z = ∑y∈Y exp(Ē(y))
is necessary when the likelihood is evaluated. The likelihood is
for example required in the training of a CRF.

• The computation of marginals is another important inference
problem. Let S correspond to a subset of the variables V , then the
marginal P(yS ) of this subset corresponds to the computation:

P(yS ) = ∑
yV\S∈YV\S

P(y)

Here V\S corresponds to the output variables in the complement
of S and yV\S the assignment to these variables. Finally, y is
understood as the combination of yV\S and yS . Of special interest
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is the marginal of an individual variable i as well as marginals of
variables sharing a common factor. As discussed in Section 2.1, the
unary marginals P(yi) are important for computing the Maximum
Posteriori Marginal (MPM) and the Minimum Mean Squared Error
(MMSE) prediction in probabilistic models.

• Marginal MPE or marginal MAP (Koller and Friedman 2009, Section
2.1.5.3) refers to an inference problem where for some variables a
maximization is performed and for other variables an integration
is carried out. More formally, for a partition (A,B) of the variables
V , the marginal MPE corresponds to the task

y?A = argmax
yA

∑
yB

exp(Ē(y)).

The marginal MPE problem arises for example in the context of
minimum Bayes risk prediction as discussed in Section 2.1 as
the unknown true state of the output variables is marginalized
over, see (2.1). We will also be confronted with the marginal MPE

problem in Chapter 6.

2.7.1 Hardness of Inference

Deciding whether a labeling is the MPE configuration is NP-hard. For
the related problem of inference in Bayesian networks, this fact is for ex-
ample shown in (Cooper 1990; Roth 1996). Chandrasekaran, Srebro, and
Harsha (2008) discuss several inference problems and their complexity.

The decision variant of MPE inference can be shown to be NP-hard by
reducing 3-SAT to MPE inference. The reduction introduces a variable
for each literal and each clause maps to one factor. The potential is 0
if the clause is fulfilled and ∞ otherwise. Deciding whether a formula
has a satisfying assignment is then equivalent to deciding whether a
MPE solution with zero energy exists.

The computation of the partition function of an undirected graphical
model on the other hand is a #P-hard problem. This fact follows from a
reduction of the #P-hard problem of computing the permanent (Valiant
1979) to a partition function computation in an undirected graphical
model.
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2.7.2 Inference for a Tree and Belief Propagation

Trees have the favorable property that no loops are present in the graph.
It turns out that this property renders many of the inference tasks
tractable. We will restrict the discussion here to pairwise graphical
models and tree graphs. The algorithms can also be extended to general
loop-free factor graphs or graphical models with a forest structure. One
of the main difficulties of probabilistic inference is posed by the fact
that the joint distribution P(y) often does not permit a representation
by marginals P(yi) ∀i and P(yi, yj) ∀(i, j) ∈ E . In the remainder of
this thesis we use µi(yi) := P(yi) and µij(yi, yj) := P(yi, yj). The
joint distribution for a tree-shaped graphical model builds the notable
exception and can be written as

P(y) = ∏
i∈V

µi(yi) ∏
(i,j)∈E

µij(yi, yj)

µi(yi)µj(yj)

= ∏
i∈V

µi(yi)
1−di ∏

(i,j)∈E
µij(yi, yj). (2.28)

Here di denotes the degree of the i-th node in the graphical model. And
we define 0/0 := 0. (2.28) is a consequence of the so-called junction-tree
theorem (Wainwright and Jordan 2008, Proposition 2.1). Due to thisjunction-tree theorem

factorization, using simple algebra and exchanging the order of the
sums, the entropy of the joint distribution can be shown to be given by

H(P) := − ∑
y∈Y

P(y) log P(y)

= ∑
i∈V

(1− di)H(µi) + ∑
(i,j)∈E

H(µij). (2.29)

Here H(µi) and H(µij) denote the unary and pairwise entropies. We
assume that the unary and pairwise marginals are represented as a
vector of dimensionality equal to |Yi| and |Yi|· |Yj|, respectively. For a
probability vector µ over K states, the entropy is defined as

H(µ) := −
K

∑
k=1

µk log µk.
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For the unary marginals, k runs over all the states in Yi, whereas for the
pairwise marginals, the index runs over all joint configurations Yi ×Yj.
The tree entropy in (2.29) can alternatively also be written as

H(P) = ∑
i∈V

H(µi) + ∑
(i,j)∈E

Iij(µij, vec(µiµ
T
j )),

where vec(· ) denotes the “vectorization” of a matrix and Iij denotes
the mutual information for edge (i, j):

Iij(µij, vec(µiµ
T
j )) = ∑

(yi ,yj)∈Yi×Yj

µij(yi, yj) log
(

µij(yi, yj)

µi(yi)µj(yj)

)
. (2.30)

The mutual information is non-negative and only equal to zero if the
factorized and joint distribution are the same. The mutual information
can be expressed as

Iij(µij, vec(µiµ
T
j )) = H(µi) + H(µj)− H(µij). (2.31)

The factorization properties for tree-shaped graphical give rise to ex-
act dynamic programming approaches for the inference of the marginals
and the MPE configuration. The algorithms are widely known in dif-
ferent fields under different names: belief-propagation (Pearl 1986),
the Viterbi algorithm (Viterbi 1967) and the forward-backward algo-
rithm (Rabiner 1989) are all based on the same idea. The algorithm
is given in Algorithm 2.2 and has the same form for the inference of
marginals and the MPE configuration, it only differs in the way the
messages and the final solution are computed.

Algorithm 2.2 Message-passing for a tree-shaped graphical model.
Require: G = (V , E), θi ∀i ∈ V , θij ∀(i, j) ∈ E .

1: initialize the messages mi→j(yj) ∀(i, j) ∈ E , yj ∈ Yj.
2: define a node r ∈ V to be the root.
3: send messages mi→j upwards from the leafs to the root r.
4: send messages mi→j downwards from the root r to the leafs.
5: return marginals according to (2.33) and (2.34) or MPE assignment

according to (2.35).

For inference of the marginals, the sum-product updates are used:

mi→j(yj) ∝ ∑
yi

exp(θ̄ij(yi, yj) + θ̄i(yi)) ∏
s∈N (i)\j

ms→i(yi)

 .
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Algorithm 2.2 with the sum-product updates is commonly referred tosum-product algorithm

as the sum-product algorithm. On the other hand, for inference of the
MPE configuration, the max-product updates are employed instead:

mi→j(yj) ∝ max
yi

exp(θ̄ij(yi, yj) + θ̄i(yi)) ∏
s∈N (i)\j

ms→i(yi)

 . (2.32)

Algorithm 2.2 with the max-product updates is called the max-product
algorithm. The solution is computed differently for the two problems.max-product algorithm

For the sum-product algorithm, the unary marginals are computed as
follows:

µi(yi) ∝ exp(θ̄i(yi)) ∏
j∈N (i)

mj→i(yi), (2.33)

and the pairwise marginals as

µij(yi, yj) ∝ exp(θ̄ij(yi, yj))
µi(yi)µj(yj)

mi→j(yj)mj→i(yi)
. (2.34)

On the other hand, the MPE assignment is obtained by

yi = argmax
yi

∏
j∈N (i)

mj→i(yi). (2.35)

This computation can be performed at the root as soon as all incoming
messages are known. For max-product it is important to note that one
needs to keep track of the maximizing variables in (2.32). Like this in
the down-wards pass of the message-passing, the computation of the
MPE assignment according to (2.35) can be carried out consistently in
case there exist several maximizing configurations.

Both algorithms have a linear complexity in the number of nodes
|V| and the number of edges |E | and a quadratic complexity in the
number of states K2, where K denotes the size of the variable with the
largest output domain. Altogether the complexity is hence O(K2|E |+
K|V|). Note that the O-notation does not absorb large constants, as
only two passes through the tree are required. To appreciate these
results, we would like to point out that a naive MPE inference algorithm
would simply compute the energy for each of the exponentially many
configurations y ∈ Y and return the one with the lowest energy. This
naive algorithm would result in a complexity of the form O(K|V|· (|V|+
|E |)). A slightly modified version of this naive algorithm could also be
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used for the marginals computation, resulting in the same exponential
complexity.

Algorithm 2.2 gives an efficient and exact way to compute the
marginals or the MPE configuration of a tree-shaped graphical model.
However, what about the partition function? As the partition function
can be related to the entropy and the internal energy according to (2.4),
the sum-product algorithm also immediately gives a tractable approach
to compute the partition function: One first computes the marginals of
the nodes and edges in the graphical model, from this it is then easy
to compute the internal energy and the entropy. Finally from (2.4) the
partition function can then be computed.

Algorithm 2.2 will only work for trees, as in a graph with loops
the root is not well-defined. A modified algorithm, called loopy belief
propagation (Pearl 1990; Yedidia, Freeman, and Weiss 2005) computes loopy belief

propagationthe same messages, but does not perform a topological sort of the
nodes first. Loopy belief propagation exists in various variants, such as
synchronous and asynchronous schedules (Elidan, McGraw, and Koller
2006). Loopy belief propagation is still converging to the marginals
or the MPE assignment for trees, but is no longer guaranteed to only
require two iterations. In many applications, loopy belief propagation
has been found to lead to satisfying approximate solutions, and is still
popular due to its simplicity.

The discussion of message-passing is on purpose kept short. For
more detailed explanations and exact computations in factor graphs,
see (Bishop 2006, Chapter 8) or (MacKay 2003, Chapter 26). (Hazan
and Shashua 2010) gives a unifying view on many different variants of
message-passing.

2.7.3 Variational Inference

Section 2.4 introduced the variational formulation of the log partition
function. This variational formulation can be used for both, the com-
putation of the partition function (and hence the marginals), but also
for the evaluation of the MPE assignment. By conjugate duality, both
problems can be stated as the following minimization problem:

min
µ∈M
〈θ,µ〉 − 1

β
H(µ). (2.36)
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For MPE inference, β → ∞ and hence the entropy can be discarded
from the objective. As stated before, there exist two problems with the
formulation above:

1. The marginal polytopeM is difficult to describe and requires an
exponential number of constraints in general.

2. For the computation of marginals, when the entropy term does
not vanish there is an additional obstacle: The entropy does in
general not factorize over the marginals and is therefore difficult
to compute9. The tree case is a notable exception, where due
to the junction tree theorem it is possible to express the joint
distribution through the marginals, see (2.28).

A large body of research has considered approximations of the varia-
tional problem above, by tackling these two obstacles. We differentiate
two classes of approximation approaches based on whether for the MPE

problem the obtained solutions are upper or lower bounds on the trueupper and lower
bounds energy of the MPE assignment. The first class of algorithms relaxes the

marginal polytopeM and therefore obtains lower bounds on the true
MPE configuration. On the other hand, a second class of algorithms
leads to upper bounds on the MPE configuration. We refer to the former
class as an outer approximation, to the latter as an inner approximation.
We briefly sketch the ideas below, and review the approaches in more
detail in Chapter 3.

2.7.4 Outer Approximations

Outer Approximations replace the combinatorially large marginal poly-
tope M by the simpler local marginal polytope LG . In general LG also
contains marginal configurations that do not correspond to any valid
joint distribution P(y|θ̄). LG only includes local summation and nor-local marginal polytope

malization constraints and is formally specified by

LG =

µ
∣∣∣∣∣∣∣∣∣

∑yi
µi(yi) = 1 ∀i ∈ V

∑yj
µij(yi, yj) = µi(yi) ∀yi, (i, j) ∈ E

∑yi
µij(yi, yj) = µj(yj) ∀yj, (i, j) ∈ E

µij(yi, yj) ≥ 0 ∀yi, yj, (i, j) ∈ E

 . (2.37)

9 Again, note that H(µ) should be read as “the entropy of the distribution that gave rise
to the marginals µ”.
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For the special case, where there exist no loops in the graphical model,
it holds thatM = LG . The equivalence follows from the fact that for a
tree-shaped graph, the junction-tree property ensures the expressibility
of the joint distribution as a product of pairwise and unary marginals.

One immediately obtains an approach to compute a lower bound on
the energy of the MPE solution by replacing the marginal polytope by
the local marginal polytope and solving the resulting linear program.
In the case of marginal inference, i.e., when the entropy in (2.36) does
not vanish, one additionally needs to upper bound the entropy.

2.7.5 Inner Approximations and Meanfield Methods

The mean-field approach is originating from statistical physics; for a
detailed review see (Wainwright and Jordan 2008, Section 5). Instead of
relaxing the marginal polytope as in the outer approximations, for mean-
field methods one restricts the possible marginals to a subset of the
marginal polytope. The most popular approach is to restrict the family
of marginals, to those that come from a fully factorized distribution, the
product distribution. Contrary to the outer approximation discussed
earlier, the mean-field approach generally leads to a computationally
difficult non-convex optimization problem.

2.7.6 Submodular Energies

We have already seen that for tree-shaped graphical models inference
is tractable and both marginals and the MPE configuration can be ob-
tained in linear complexity in the number of edges and nodes. Another
important family of tractable energies are submodular functions which
are discrete analogues of convex functions (Fujishige 1991; Lovasz 1983).
For submodular functions only the MPE computation is known to be
tractable, no similar results are known for marginals. Submodular
functions are particularly important because of their widespread use in
modeling labeling problems in computer vision such as 3D voxel seg-
mentation (Snow, Viola, and Zabih 2000) and foreground-background
image segmentation problems (Boykov 2001; Blake et al. 2004).

We refer to (McCormick 2006) for a more detailed review of sub-
modular functions and their minimization. Let us consider a set V and

49



background

denote the size of this set by n = |V|. A set function f : 2V → R is
called submodular if

f (S + {e})− f (S) ≥ f (T + {e})− f (T ) ∀S ⊂ T ⊂ T + {e}.

Here S and T denote subsets of V . This property is often called
diminishing return: Adding e to a larger set should increase the function
value by no more than adding it to a smaller set. An equivalent
definition of submodular functions is given by

f (X ) + f (Y) ≥ f (X ∪ Y) + f (X ∩ Y) ∀X ,Y ⊆ V .

Minimization of general submodular functions is known to be polyno-
mially time solvable. The currently fastest algorithm (Orlin 2009) has
running time O(n5T + n6), where T is the time required to evaluate the
function and n is the number of elements in the set. These exact algo-
rithms for submodular function minimization are hardly practical for
the dimensions encountered in typical machine learning or computer
vision problems. Therefore recent research in these fields has focused
on two particular aspects of submodular function minimization. The
first line of research identifies special submodular functions, for which
efficient and exact algorithms can be devised (Kohli and Kumar 2010;
Stobbe and Krause 2010), we will consider such a special case in Chap-
ter 4. Another direction is to find general approximate submodular
function minimization algorithms (Jegelka, Lin, and Bilmes 2011).

In case the function is pairwise and binary, the submodularity defi-
nition can be restated as follows. In terms of the energy formulation
from earlier sections, the submodularity requirement reduces to

θij(0, 0) + θij(1, 1) ≤ θij(0, 1) + θij(1, 0) ∀(i, j).

In words this means that all the pairwise potentials have to be asso-
ciative. There is no restriction on the unary potentials. It turns out
that for the special case of submodular pairwise, binary functions the
minimization can be restated as a minimum s-t-cut or equivalently
as a maximum flow problem (Papadimitriou and Steiglitz 1982, Sec-
tion 6.1). Given a directed graph G = (V , E) with a cost cij for each
edge (i, j) ∈ E . Moreover, a dedicated source node s and a sink node
t are specified. The minimum s-t-cut problem is to find a partition
(S , T ) of the nodes with s ∈ S and t ∈ T , such that the cut-set cost
∑(i,j)∈E ,i∈S ,j∈T cij is minimized. Below we discuss the construction of a
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graph for which the solution of the minimum s-t-cut problem recovers
the exact MPE assignment of a pairwise, binary, associative energy. In
the computer vision literature it has been a common practice to refer to
this construction as graph-cut. The graph-cut construction adopted here graph-cut

is from (Kolmogorov and Zabih 2004). Figure 2.14 visualizes the graph
construction for a unary potential. This construction is carried out for

s

t

yi

θi(1)− θi(0)

(a) Case 1, θi(0) < θi(1).

s

t

yi

θi(0)− θi(1)

(b) Case 2, θi(0) ≥ θi(1).

Figure 2.14: Graph construction for the i-th node. Depending on which
state has a lower energy, the node is connected to either
the source s or the sink t.

every node i ∈ V .
For each edge (i, j) a similar construction is carried out. Let us first

denote the different terms of the edge energy as follows

θij =
θij(0, 0) θij(0, 1)
θij(1, 0) θij(1, 1)

=
A B
C D

The pairwise energy can then be rewritten as

A B
C D

= A +
0 0

C− A C− A
+

0 D− C
0 D− C

+
0 B + C− A− D
0 0

The first term on the right hand side can be ignored as it is constant no
matter what the assignment is. The second and third term can be rep-
resented by unary potentials for node i and j, respectively. The unary
construction from above also needs to be applied to these potentials.
Finally, the last term needs to be handled specially by a connection
between the i-th and the j-th node. An example configuration is visual-
ized in Figure 2.15. Note, that for associative energies B + C− A− D
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s

t

yi yj

C− A

B + C− A− D

C− D

Figure 2.15: Pairwise graph-cut construction where for example C > D
and C > A.

is always positive and therefore none of the edges have a negative
cost. The non-negativity is important as otherwise, maximum flow
algorithms could not be applied, as non-negativity of flow is a crucial
property.

Finally, as an alternative to the maximum flow algorithms, it can
be shown that for pairwise, binary submodular energy functions, the
Linear Program (LP) relaxation (for the local marginal polytope) leads
to non-fractional solutions, and therefore to the global minima.

2.7.7 Markov Chain Monte Carlo Techniques

Markov Chain Monte Carlo (MCMC) methods (Robert and Casella 2005)
are widely adopted in practice and are based on sampling. We here
restrict ourselves to Gibbs sampling, one of the simplest and most com-Gibbs sampling

mon approaches. Gibbs sampling in graphical models is based on the
fact, that given the state of the Markov blanket of the i-th variable, it is
easy to compute the probabilities for the different outcomes of yi, as the
partition function collapses to a sum over the |Yi|-many states, which
is efficient to compute. We illustrate Gibbs sampling for a graphical
model in Algorithm 2.3. An obvious application of Gibbs sampling
is drawing typical configurations from a graphical model. However,
variants can also be used for approximating marginals or computing
an MPE assignment. For marginal inference, one can simply track the
configurations drawn in several sweeps10 and average to get an approx-

10 A sweep corresponds to sampling all variables once.
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Algorithm 2.3 Gibbs sampling for a graphical model.
Require: G = (V , E), θi ∀i ∈ V , θij ∀(i, j) ∈ E .

1: Initialize the state yi randomly ∀i ∈ V .
2: while not converged do
3: for i = 1, . . . , |V| do
4: Sample yi according to P(yi|yN (i)).
5: end for
6: end while

imation of the marginals. For MPE inference popular approaches are
simulated annealing (Kirkpatrick, Gelatt, and Vecchi 1983) and deter-
ministic annealing (Hofmann and Buhmann 1997). Annealing strategies
increase the inverse temperature of the Gibbs distribution while per-
forming Gibbs sampling, to eventually only sample from low-energy
configurations.

2.8 approximate learning

As we have seen, learning with the maximum margin loss and the
log-loss requires efficient algorithms to compute the partition function
or infer the loss augmented MPE label. In general these two problems
are intractable and therefore also learning is intractable. This section
overviews the different approaches in the literature for approximate
learning. An illustrative example for the need of choosing the combi-
nation of the inference algorithm and the learning objective carefully
is given in (Kulesza and Pereira 2008): A learning algorithm is shown
to fail, despite the fact that the approximate inference algorithm has
strong approximation guarantees.

2.8.1 Pseudolikelihood and Composite Likelihood

For probabilistic learning of CRFs, a relatively well-established approach
is given by maximum pseudolikelihood and maximum composite like-
lihood. The basic idea is to leverage on the known ground-truth ob-
servations in training by clamping variables in the graphical model
to their observed state. Maximum pseudolikelihood was initially pro-
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posed in (Besag 1975) and considers the following (here unregularized)
learning objective

w? = max
w

1
N

N

∑
n=1

∑
i∈V

log P(yn
i |yn
\i,x

n,w).

Where yn
\i denotes all the variables, except the i-th variable of the n-th

example. Conditioning on all the remaining variables is equivalent
to conditioning on the variables in the Markov blanket of variable i.
Because of the conditioning, the state space relevant for the computation
of the partition function collapses to Yi, which is generally very small
and therefore remains tractable. A generalization of pseudolikelihood is
given by the composite likelihood (Lindsay 1988), which studies larger
decompositions of the nodes V of the graph G = (V , E). Formally, let
{(A1,B1), . . . , (AM,BM)} denote a collection of M partitions of V into
two sets, i.e. A∪ B = V and A∩ B = ∅. Then composite likelihood 11

considers instead of the maximum likelihood objective the following
objective

w? = max
w

1
N

N

∑
n=1

M

∑
m=1

log P(yn
Am
|yn
Bm

,xn,w).

For certain choices of A and B, the required partition function compu-
tation can still be carried out exactly. This is for example the case if A
is chosen such that all loops are blocked by nodes in B.

Both, maximum pseudolikelihood and maximum composite likeli-
hood are concave optimization problems. By negating the objective,
as before for maximum likelihood learning, general convex minimiza-
tion algorithms for smooth objectives, such as L-BFGS, can be used
to perform the numerical optimization. We will study different as-
pects of pseudolikelihood and composite likelihood in more detail in
Chapter 6. Pseudolikelihood is generally only studied in the context
of probabilistic models. A notable recent exception is (Sontag et al.
2010), which formulates a maximum pseudolikelihood objective for
the training of structured SVMs. (Dillon and Lebanon 2010) recently
introduced a stochastic version of composite likelihood, where the
decompositions are chosen stochastically. With a small probability com-
putationally more demanding decompositions, such as modest-sized
cyclic subgraphs, are incorporated.

11 We restrict ourselves to the conditional composite likelihood; the related marginal
conditional likelihood is not discussed here.
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A desirable theoretical aspect of pseudolikelihood and composite
likelihood is the property that in the limit as N → ∞ and under some
regularity conditions, the parameter estimate recovered by pseudolike-
lihood converges to the true value of the parameter (Lindsay 1988).
Therefore, maximum pseudolikelihood is a consistent estimator. One consistency

disadvantage of pseudolikelihood in practice is however, that the vari-
ance of the estimator is large, and often very large datasets are needed
in order to recover good parameter estimates.

2.8.2 Contrastive Divergence

Contrastive Divergence (CD) was initially introduced in (Hinton 2002)
for the training of product of experts classifiers. CD applied to the
training of (probabilistic) structured classifiers stochastically approx-
imates the gradient of the objective, but does not approximate the
objective itself. Hence, for learning with CD usually Stochastic Gradient
Descent (SGD) (Robbins and Monro 1951; Kiefer and Wolfowitz 1952) is stochastic gradient

descentused, which is also well-suited for large-scale training. The gradient of
the log-likelihood loss is given in (2.19) and consists of two terms:

∂`ll(w,x,y)
∂w

= −φ(x,y) + EP(y′|x,w)[φ(x,y′)].

The first term, the sufficient statistic of the observed training data is
trivial to compute and fixed throughout learning. Whereas, the second
term, the expected sufficient statistics by the model (for the current
parameters), is generally intractable. CD approximates this term by
running an MCMC sampling algorithm, such as Gibbs sampling, for only
a few iterations (often only one iteration). The key idea of contrastive
divergence is to initialize the sampling algorithm with the ground-truth
observation. As it is standard for SGD approaches, a learning rate has to
be specified. In practice CD has lead to satisfactory results and generally
is also fairly efficient (Schmidt, Gao, and Roth 2010).

The convergence of CD is analyzed in (Yuille 2004), where sufficient
conditions for its convergence are introduced. Furthermore, CD is
related to classical stochastic approximation literature. However, there
exist also negative results about the convergence of CD: (Sutskever and
Tieleman 2010) shows that (non-regularized) CD updates can not be
related to the gradient of any function. Also, an example is shown
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where CD cycles indefinitely. All these examples are in the context of
restricted Boltzmann machines.

The connections between CD and pseudolikelihood and compos-
ite likelihood are studied in (Asuncion et al. 2010). In particular, a
blocked CD algorithm is given that performs sampling for a larger sub-
set of variables (a block), than in the standard Gibbs sampling, which
only considers one individual variable. This particular algorithm is
related to composite likelihood where the likelihood is defined over
the same block. Finally, (Vickrey, Lin, and Koller 2010) formulates a
non-local contrastive divergence objective, which is investigated in more
detail in Chapter 5.

2.8.3 Approximate Maximum Margin Learning

Approximate learning with the maximum margin surrogate loss is
studied in (Finley and Joachims 2008). One particularly interesting
aspect of their work, is the fact that they found structured SVMs to work
well in combination with LP relaxations. The constraint generation
method in the cutting-plane algorithm in their work is also based on
LP relaxations. For fractional LP solutions, instead of rounding to valid
solutions, Finley and Joachims (2008) generate the constraints directly
based on the fractional solutions, which can be achieved by weighting
the feature maps and losses of the different outcomes according to the
marginal probability of the solution. Learning with outer bounds is
particularly attractive, as it makes learning harder than it actually is, if
the true marginal polytope would be used.
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L P Q P F O R M P E I N F E R E N C E

In the present chapter we investigate the problem of Most Probable
Explanation (MPE) inference in settings where the Linear Program (LP)
relaxation is not tight. Our approach is based on augmenting the con-
vex LP relaxation by a non-convex term that penalizes inconsistencies
present in the LP formulation. A scalar parameter that can be under-
stood as a temperature, gradually increases the importance of this
penalty term. A similar idea will also be used in Chapter 5 for learning
CRFs.

3.1 introduction

We study the problem of MPE or equivalently Maximum-A-Posteriori
(MAP) inference in graphical models. As introduced in Section 2.7,
the MPE task is to compute a minimum energy assignment of a set of
dependent variables. In the general case, MPE inference is intractable,
and therefore most of the current research efforts are concentrated on
finding efficient and accurate approximation algorithms. In recent years,
Linear Program (LP) relaxations (see Subsection 2.7.4) gained popularity
due to their proven success in relevant applications. Several efficient
algorithms have been developed to solve the linear program emerging
from the relaxation. Despite their success, in many practical problems
the solution attained by the LP relaxations is still far from the global
minimum.

Our work improves over the LP relaxation by leveraging on a second
class of relaxations, namely the Quadratic Program (QP) relaxation (see
Subsection 2.7.5). The QP formulation offers a concise and compact
description of the MPE problem. We formulate a joint LP and QP MPE

objective, that encourages auxiliary variables present in the LP relax-
ation, to agree with their counterpart in the QP relaxation, through a
penalty function. Despite of the non-convexity of this objective, we
show that by slowly increasing the weight of the penalty, the solutions
found are either competitive with, or in most cases better than the LP

57



lpqp for mpe inference

relaxation solutions. This is in general not the case for the few existing
QP relaxation solvers.

We propose two variants of the penalty function, each leading to a
different Linear and Quadratic Program relaxation (LPQP) objective. We
show that the resulting non-convex objectives can be decomposed into
a difference of convex functions, which we solve using the Concave-
Convex Procedure (CCCP). Having mastered the non-convexity with
the CCCP, we solve one of the remaining convex problems with the
dual decomposition method, and show that the other can be addressed
with the norm-product belief propagation. Interestingly, the main
computational task of both of the resulting LPQP algorithms, turns out
to be solving known entropy-augmented LPs.

Our contributions are as follows: First we introduce a combined
LPQP objective, incorporating the QP constraints through a soft penalty
function in the objective. We propose two alternatives for the penalty
function, which differ in the way the edges in the graph are weighted.
Secondly, we derive CCCP based algorithms for the LPQP objectives, and
show that their core computational effort reduces to current entropy-
augmented LP solvers. This demonstrates that these modern LP solvers
can in some cases be utilized in a smarter way than simply solving the
original LP relaxation, leading to possibly faster convergence, as well as
lower energy MPE solutions. Through experiments on various datasets,
we demonstrate the performance of the suggested LPQP MPE inference
in comparison to other commonly used solvers.

3.2 background and notation

For the sake of clarity we focus on pairwise graphical models. The
extension to higher-order factors is relatively straightforward, at the
price of a more complicated notation and increased complexity due
to the larger factors. Also, we assume that the energy function is speci-
fied explicitly through unary and pairwise potentials, rather than implicitly
through parameters and feature functions. Therefore we can state the
MPE problem as follows: For an undirected graph G = (V , E) assign
each node in the graph to a class or category, such that the overall
assignment minimizes an associated energy. Let yi denote a discrete
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variable with a finite domain Yi, with |Yi| = K1, representing the
assignment of the i-th node. The MPE problem is defined as

min
y

∑
i∈V

θi(yi) + ∑
(i,j)∈E

θij(yi, yj). (3.1)

Where θi(yi) and θij(yi, yj) are unary and pairwise potential functions
associated with the node and edge assignments. Problem (3.1) can be
expressed as an integer quadratic program using a K-ary coding:

min
µ

∑
i∈V
θTi µi + ∑

(i,j)∈E
µT

i Θijµj (3.2)

s.t. µi;k ∈ {0, 1} ∀i, k and ∑
k

µi;k = 1 ∀i.

The pairwise and unary potentials in (3.2), are represented as a matrix
Θij and a vector θi, respectively.

Variational approaches (see Subsection 2.7.3) to MPE inference refor-
mulate the combinatorial optimization problem in (3.1) as a continuous
optimization problem. The next sections formally define two such
approaches, namely the LP and QP relaxations. In general, the LP mini-
mization results in a lower bound on the energy of the global minimizer,
while the QP results in an upper bound. The constraint set of the two
relaxations is illustrated in Figure 3.1.

3.2.1 Linear Programming Relaxation

The LP approach (Schlesinger 1976; Wainwright and Jordan 2008) is
based on a convex relaxation of (3.2), where an additional variable µij is
included for each edge. Proper local marginalization is enforced through
summation constraints. Let us define θ as the vectorized version of the
matrix Θ, i.e. θ = vec(Θ) The LP reads as

min
µ∈LG

∑
i∈V
θTi µi + ∑

(i,j)∈E
θTijµij, (3.3)

with LG , the local marginal polytope:

LG =

µ
∣∣∣∣∣∣∣∣

∑k µi;k = 1 ∀i ∈ V
∑l µij;kl = µi;k ∀k, (i, j) ∈ E
∑k µij;kl = µj;l ∀l, (i, j) ∈ E
µij;kl ≥ 0 ∀k, l, (i, j) ∈ E

 .

1 For notational convenience we assume Yi = {1, . . . , K}; in the experiments we will
however also consider settings where the domain of the variables has different size.

59



lpqp for mpe inference

LG

M

LQP
G

Figure 3.1: Schematic illustration of the constraint set in the LP (solid)
and the QP (dashed) relaxations. While the LP relaxation
is an outer bound on the true marginal polytope (dotted)
leading to additional fractional solutions (shown as non-
filled circles), the QP relaxation gives an inner bound. We use
LQP
G to denote the local marginal polytope with additional

quadratic consistency constraints.

In the general case, LG is an inexact description of the marginal polytope
M, which requires an exponentially large number of constraints (Wain-
wright and Jordan 2008). If LG in (3.3) is replaced by M, then the
solution recovers the true MPE assignment. A solution to an LP-based
approach (for a constraint set consisting of any subset of the marginal
polytope, such as LG), admits an easy to verify certificate of optimality.
If the solution is integer, it is the global optimum.

The work in (Sontag et al. 2008) proposes to tighten the polytope
by including summation constraints over larger subsets of variables.
This approach has been successful in identifying the global minimum
for some problems. However, it suffers from an increased complexity
as ultimately an exponentially large set of possible constraints might
need to be searched over. In practice a class of possible summation
constraints are considered, such as those consisting of all triplets.
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3.2.2 Quadratic Programming Relaxation

An alternative relaxation of the integer quadratic program in (3.2) is
obtained by simply dropping the integer constraints. The resulting QP

is given by:

min
µ

∑
i∈V
θTi µi + ∑

(i,j)∈E
µT

i Θijµj (3.4)

s.t. 0 ≤ µi;k ≤ 1 ∀i, k and ∑
k

µi;k = 1 ∀i.

A major advantage of the QP relaxation, is its tightness, which means
that the minimizer of (3.4) also minimizes (3.1), as was shown in
(Ravikumar and Lafferty 2006). The QP also benefits from a more com-
pact description compared to the LP relaxation, as it requires fewer
constraints and variables to formulate the exact MPE problem. The vari-
able vector µ, is of size K· |V|+ K2· |E | in the LP (3.3) and only K· |V| in
the QP. The biggest drawback of the QP relaxation, is that in the general
case the optimization problem turns out to be non-convex due to the
edges product term. This fact renders an exact minimization difficult.
A QP solution is not necessarily guaranteed to be integer. As was shown
in (Ravikumar and Lafferty 2006), a (local) solution to the QP relaxation
can always be rounded to an integer solution with smaller or equal
energy. We will discuss this rounding strategy in Subsection 3.4.2.

In terms of motivation, our work is similar to the QP relaxation ap-
proach. The QP formulation of the MPE problem (3.4) was introduced
in (Ravikumar and Lafferty 2006), but stems from classical mean-field
approaches. Ravikumar and Lafferty (2006) solved the non-convex
problem using a convex relaxation. The solution was later improved
in (Kappes and Schnörr 2008) through a difference of convex functions
formulation. Both solvers are generic in the sense that they do not
exploit the graph structure. Recently (Kumar and Zilberstein 2011)
introduced a message-passing algorithm for solving the QP relaxation.
While improving the run time over the other two algorithms, it still
generally suffers from poor solutions due to local minima. The QP

solvers often deal with this drawback by restarting with different ini-
tializations. We observed that our LPQP algorithms, are much more
resilient with respect to the initialization. In all of the experiments we
conducted, a restart was never required. We attribute this behavior to
the gradual progression between the LP and QP. Finally, in concurrent
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work (Kumar, Zilberstein, and Toussaint 2012) propose a hybrid LP

and QP approach to MPE, similar to our formulation discussed in the
next section. The resulting optimization problem is solved by a custom
message-passing scheme. Our work on the other hand, in its essence
reduces to well-known entropy-augmented LP objectives, for which
efficient message-passing algorithms exist.

3.3 combined lp and qp relaxation

We propose to optimize an objective which is a combination of the LP

and QP relaxations. We retain the auxiliary variables µij of the pairwise
terms, but force these variables to agree with the product of the unary
marginals µi and µj. The constraints, given by vec(µiµ

T
j ) = µij ∀(i, j) ∈

E2, are enforced through a penalty function g(· ) incorporated in the
objective. The extent to which the constraint is enforced, is regulated
by the parameter ρ.

We focus on the Kullback-Leibler (KL) divergence as the penalty func-
tion. In our setting this is equivalent to the mutual information between
the unary and marginal variables. The choice of the penalty function is
motivated by the probabilistic nature of the compared marginal terms.
Moreover, as we will see later, the use of the KL divergence as a penalty
term gives rise to efficient message-passing algorithms for the solution
of the resulting optimization problems. As a reminder, for probability
distributions µ and ν of a discrete random variable, their KL divergence
is defined to be

DKL(µ,ν) := ∑
k

µk log
(

µk

νk

)
.

Our approach enforces consistency between the unary and pairwise
marginals for each edge using the KL divergence. As these marginals
are properly normalized, which is ensured through the constraints in
the local marginal polytope, the KL divergence simply corresponds to
the mutual information I of the marginals for an edge (i, j), see (2.31):

Iij(µij, vec(µiµ
T
j )) = H(µi) + H(µj)− H(µij).

In our work the mutual information between the pairwise term µij and
the product of unary terms vec(µµT) is minimized, as in the consistent

2 Here vec(µiµ
T
j ) denotes the vectorized version of the outer product of µi and µj.
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case the mutual information is zero. The general form of the combined
LPQP objective reads as

min
µ∈LG

θTµ+ ρg(µ). (3.5)

The first term is simply the LP objective (3.3), written as a scalar prod-
uct between the potential function, and the concatenated unary and
pairwise variables. We investigate two constructions of the penalty
term g(µ). The constructions differ in the weighting of the edges. The
penalty function has the property that it is positive and only zero if the
unary marginals agree with the pairwise marginals for all the edges.
For ρ = 0, (3.5) amounts to the standard LP relaxation. On the other
extreme when ρ → ∞, the constraints vec(µiµ

T
j ) = µij ∀(i, j) ∈ E are

fulfilled and the QP relaxation is recovered. By successively increasing
ρ during the run of our algorithms, we achieve a gradual enforcement
of the constraints.

uniform weighting The KL divergence is penalized in the same
way for all the edges in the graph:

guni(µ) := ∑
(i,j)∈E

DKL(µij, vec(µiµ
T
j )) (3.6)

= ∑
(i,j)∈E

Iij(µij, vec(µiµ
T
j ))

= ∑
i∈V

di H(µi)− ∑
(i,j)∈E

H(µij).

As before, di denotes the degree of the i-th node.

tree-based weighting Let A denote a set of trees. In the tree-
based weighting, the KL divergence is penalized uniformly within a
forest-shaped subgraph:

gtree(µ) := ∑
a∈A

ηa

 ∑
(i,j)∈Ea

DKL(µij, vec(µiµ
T
j ))

 (3.7)

= ∑
a∈A

ηa

 ∑
(i,j)∈Ea

Iij(µij, vec(µiµ
T
j ))


= ∑

a∈A
ηa

∑
i∈Va

da
i H(µi)− ∑

(i,j)∈Ea

H(µij)

 .
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We assume that a decomposition of the original graph into acyclic
subgraphs (e.g. trees or individual edges) exists, and is given by

Ga = (Va, Ea), V =
⋃

a∈A
Va, E =

⋃
a∈A
Ea.

The positive weights ηa are tree specific, and assumed to sum to one.
In this work we simply used ηa = 1/|A|. Figure 3.2 visualizes two
different choices of acyclic decompositions for a regular grid.

Figure 3.2: Two different decompositions of a regular grid. The choice
on the left includes each edge in only one of the two decom-
positions, whereas the choice on the right covers some edges
on the boundary twice. Both decompositions are valid in
our framework, but might however lead to slightly different
convergence properties or identify different local minima
of the QP objective. Jancsary and Matz (2011) refer to the
decomposition on the right as “snakes”. For regular grid
graphs we usually use the decomposition on the left.

difference to the bethe free energy We would like to con-
trast the LPQP approach to a popular objective for marginal inference (as
opposed to MPE inference), the Bethe free energy. As discussed in Sub-
section 2.7.3, marginal inference using variational methods has the
additional problem, that in general the entropy does not factorize into
individual marginals and therefore approximations to the entropy have
to be found. One popular entropy approximation is given by the Bethe
entropy, see (Wainwright and Jordan 2008, Chapter 4.1):

H(P) ≈ HBethe(µ) = ∑
i∈V

H(µi)− ∑
(i,j)∈E

Iij(µij, vec(µiµ
T
j )). (3.8)

This is exact in case the graphical model is a tree, and an approximation
in the general case. Comparing the Bethe entropy approximation
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in (3.8) and the mutual information penalty term in (3.6), we notice3

that the only difference between the two objectives is the unary entropy.
Hence the LPQP objective can also be understood as a Bethe free energy,
without the part that encourages configurations with a large entropy.
As we are ultimately interested in the MPE, which is integer, an entropy
term is not desirable.

3.4 lpqp algorithms

In this section we derive two algorithms for the non-convex LPQP objec-
tive in (3.5), with the different penalty terms in (3.6) and (3.7).

3.4.1 Difference of Convex Functions

The Concave-Convex Procedure (CCCP) (Yuille and Rangarajan 2003),
can be applied to a constrained optimization problem, where the ob-
jective is non-convex, provided that the objective has a decomposition
into a convex and a concave part, see Figure 3.3. CCCP has already
been applied to inference problems in the context of the Bethe free
energy (Yuille 2002) and recently to solve the QP relaxation (Kumar and
Zilberstein 2011; Kumar, Zilberstein, and Toussaint 2012; Kappes and
Schnörr 2008).
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Figure 3.3: A DC function consists of a convex and a concave part.

In our setting, we wish to find a decomposition of the form

min
µ∈LG

uρ(µ)− vρ(µ),

3 Note that we are minimizing the negative entropy in a variational principle
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where both, uρ(µ) and vρ(µ) are convex. The CCCP algorithm proceeds
by iteratively solving a convexified objective, obtained by a linearization
of vρ(µ), see Figure 3.4:

µt+1 = argmin
µ∈LG

uρ(µ)−µT∇vρ(µ
t). (3.9)
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(b) Convexified approximation of
the DC function.

Figure 3.4: The concave part of a DC function is approximated by a
linear function. We show the convexified objective as a solid
line and the original objective as a dashed line.

The decompositions of the two LPQP objectives, as well as the gra-
dients of the concave part, are shown below. In the derivations we
used the definition of the mutual information in terms of entropies,
which holds due to the marginalization constraints of the pairwise
marginals (Wainwright and Jordan 2008).

For both objectives, the convex part uρ(µ) consists of the original LP

formulation, with an additional term that encourages configurations
with a large entropy. In the uniform weights penalty, this additional
term takes the form of the entropy of the pairwise marginals, whereas
in the tree-based penalty, it constitutes of the sum of tree entropies.

The concave part of the decompositions, vρ, corresponds to an entropy
of the unary marginals. In the CCCP step (3.9), log(µi) is replaced
by log(µt

i), the marginal from the previous iteration, resulting in an
entropy approximation.

66



3.4 lpqp algorithms

uniform weighting The difference of convex function decompo-
sition of the combined LPQP objective in (3.5) for the uniform penalty
term in (3.6) is given by:

uρ(µ) = θTµ− ρ ∑
(i,j)∈E

H(µij)

vρ(µ) = −ρ ∑
i∈V

di H(µi).

Here di denotes the degree of the i-th node in the graph. The derivative
of the concave part w.r.t. the unary marginals is

∂vρ(µ)

∂µi;k
= ρdi(1 + log µi;k),

whereas the derivative w.r.t. the pairwise marginals is zero.

tree-based weighting The difference of convex function decom-
position of the combined LPQP objective in (3.5) for the tree weighted
penalty term in (3.7) can be achieved as follows:

uρ(µ) = θTµ− ρ ∑
a∈A

ηa

 ∑
(i,j)∈Ea

H(µij)− ∑
i∈Va

(da
i − 1)H(µi)


vρ(µ) = −ρ ∑

a∈A
ηa ∑

i∈Va

H(µi).

Here da
i denotes the degree of the i-th node in the subgraph indexed by

a. A(i) denotes the set of all trees that contain node i. The derivative of
the concave part w.r.t. the unary marginals is

∂vρ(µ)

∂µi;k
= ρ ∑

a∈A(i)
ηa(1 + log µi;k).

As in the uniform case, the derivative of the concave part w.r.t. to the
pairwise marginals is zero.

summary The LPQP objective consists of the standard LP relaxation
with an additional penalty term that encourages consistencies between
the unary and pairwise marginal variables. The resulting non-convex
objective is decomposed into a difference of convex functions to which
CCCP is applied. The algorithm reduces to solving a convex minimiza-
tion problem, which consists of a linear part and unary and pairwise
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negative entropy terms. The CCCP step can be understood as a modifi-
cation of the unary potentials θi based on the solution in the previous
iteration.

3.4.2 Algorithm Overview

The general scheme of the suggested LPQP algorithms is shown in
Algorithm 3.1. The algorithm consists of two loops. The inner loop
solves the DC problem for a fixed penalty parameter ρ, whereas the
outer loop gradually increases the value of ρ. Increasing ρ implies that
the penalty function for the quadratic constraint contributes more to
the overall objective, eventually resulting in a QP solution for which all
the constraints are fulfilled.

Algorithm 3.1 LPQP algorithm scheme for MPE.
Require: G = (V , E),θ, ρ0.

1: initialize µ ∈ LG uniform, ρ = ρ0.
2: repeat
3: t = 0,µ0 = µ.
4: repeat
5: µt+1 = argminτ∈LG uρ(τ )− τT∇vρ(µt).
6: t = t + 1.
7: until ‖µt −µt−1‖2 ≤ εdc.
8: µ = µt.
9: increase ρ.

10: until ‖µ−µ0‖2 ≤ ερ.
11: return µ.

The main computational task is in line 5, where a particular instance
of a convex optimization problem is solved. Subsection 3.4.3 and Sub-
section 3.4.4 discuss efficient algorithms for solving this optimization
problem for the two different weighting schemes. In this thesis we
choose two different types of algorithms for the solution of the problem:
A coordinate-descent algorithm for the uniform weighting case and a
gradient-descent algorithm for the tree weighting case. The methods
are likely to perform well in the corresponding setting. However, it is
very likely that a gradient based algorithm could also be used for the
uniform weighting, and vice versa a coordinate-descent algorithm for
the tree weighted case.
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Warm-starting the problem in line 5 with the previous solution be-
tween successive calls, leads to a substantial speed-up. We choose
the initial ρ = ρ0 depending on the scaling of the energies, and use a
multiplicative increase with a fixed value. In the experiments we use
a multiplicative factor of 1.5, but the results were not very sensitive to
this choice.

solution rounding Similarly to the LP and QP relaxations, the
solutions returned by the LPQP algorithms can be fractional. Since the
LPQP scheme ultimately solves a variant of the QP relaxation, to attain
the final integer solutions, we use the QP solution rounding scheme
suggested in (Ravikumar and Lafferty 2006). Given unary marginals
µ∗, we assign the i-th node the label y∗i given by

y∗i = argmin
k

θi;k + ∑
j∈N (i)

∑
l

θi,j;k,lµ
∗
j;l

 .

Here N (i) denotes the neighbors of node i. After determining the
label of the i-th variable, we set µ∗i;y∗i = 1 and µ∗i;k = 0 ∀ k 6= y∗i , and
continue until labels are assigned to all nodes. It can be verified that the
rounded solution has an energy that is smaller or equal to the energy
of the initial solution, see (Ravikumar and Lafferty 2006).

3.4.3 Uniform Weighting

The convex sub-problem we get in the CCCP step with the uniform
weighting penalty function (3.6), is given by

min
µ∈LG

∑
i∈V
θ̃Ti µi + ∑

(i,j)∈E
θTijµij − ρ ∑

(i,j)∈E
H(µij). (3.10)

where θ̃i, is a modification of the unary potentials by an additional
gradient term, originating in the linearized part of the DC decomposition
(3.9) 4:

θ̃i = θi − ρdi log(µt
i). (3.11)

As a result of this unary potentials modification, configurations with
small probability in the previous iteration t, are vigorously dis-en-
couraged.

4 The ρdi term in ∇vρ is constant and can therefore be dropped.
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belief propagation The convex problem in (3.10) is solved by the
norm-product Belief Propagation (BP) (Hazan and Shashua 2010). This
algorithm is a generalization of belief-propagation (Yedidia, Freeman,
and Weiss 2005) and tree-reweighted BP (Wainwright, Jaakkola, and
Willsky 2005b). It is a primal-dual ascent algorithm and is guaranteed
to converge to the global optimum for any choice of ρ > 0.

The norm-product algorithm applied to (3.10) computes messages
passed from node j to node i as follows

mj→i(yi) ∝

∑
yj

ψ
1/ρ
ij (yi, yj)

ψ
1/(djρ)

j (yj)∏s∈N (j) m
1/(djρ)

s→j (yj)

m1/ρ
i→j(yj)

ρ

,

where we choose to define ψij(yi, yj) := exp(−θij(yi, yj)) and ψi(yi) :=
exp(−θ̃i(yi)). Upon convergence the marginals µi are obtained by
multiplying the incoming messages at variable i:

µi(yi) ∝

ψi(yi) ∏
j∈N (i)

mj→i(yi)

1/(diρ)

.

Due to warm starting with the previous CCCP iteration solution, typi-
cally only few passes through the graph are needed for the messages
to converge in the later stages of the run.

3.4.4 Tree-based Weighting

The convex sub-problem corresponding to the CCCP step with the tree-
based weighting penalty (3.7) is,

min
µ∈LG

∑
i∈V
θ̃Ti µi + ∑

(i,j)∈E
θTijµij − ρ ∑

a∈A
ηaHa

tree(µ). (3.12)

Here we define the entropy of a tree by

Ha
tree(µ) :=

 ∑
(i,j)∈Ea

H(µij)− ∑
i∈Va

(da
i − 1)H(µi)

 .

As before, the linearization of the concave part in the CCCP step, results
in a modification of the unaries

θ̃i = θi − ρ ∑
a∈A(i)

ηa log(µt
i). (3.13)
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Below we illustrate how dual decomposition can be used to derive a
message-passing algorithm for the minimization in (3.12).

dual decomposition The dual decomposition framework (Bert-
sekas 1999; Komodakis, Paragios, and Tziritas 2007), can be applied
to an optimization problem provided that the objective can be decom-
posed into several sub-problems, also known in the literature as the
slave problems. The global variables, µ in our case, are replaced with
local copies in each slave problem, denoted here by νa, such that the
minimization of the slave problems can be carried out independently. To
enforce the local variables corresponding to the same original variables
to assume the same value, a designated constraint is introduced. The
optimization of the sum of slave problems, subject to these constraints,
is called the master problem. A dual decomposition of problem (3.12),
was carried out in (Domke 2011). We use the same decomposition, but
take a different route optimizing the resulting master problem.

min
µ∈LG

∑
a∈A

min
νa∈LGa

sa(ν
a) (3.14)

s.t. νa
i = µi ∀i, a ∈ A.

νa
ij = µij ∀(i, j), a ∈ A.

Here the slave problems are defined as

sa(ν) := ∑
i∈Va

θ̂Ti νi + ∑
(i,j)∈Ea

θ̂Tijνij − ρηaHa
tree(ν).

Note that since the summation over the trees now extends to include
the unary and pairwise terms, the corresponding potentials should be
adjusted accordingly

θ̂i =
θ̃i

|A(i)| , θ̂ij =
θij

|A(i, j)| .

Each slave problem is defined over a tree structured graph and can
therefore be solved exactly using the sum-product algorithm, in two
passes over the tree. The temperature in this case is ρηa.
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In practice, instead of (3.14), we consider the following master prob-
lem

∑
a∈A

min
νa∈LGa

sa(ν
a) (3.15)

s.t. νa
i =

1
|A(i)| ∑

a′∈A(i)
νa′

i ∀i, a ∈ A(i)

νa
ij =

1
|A(i, j)| ∑

a′∈A(i,j)
νa′

ij ∀(i, j), a ∈ A(i, j).

Here we use the idea from (Domke 2011) who formulates the constraint
on the replicated marginal variables to agree with the mean. This is
simpler than the constraint in (3.14), as one does not need to introduce
the additional variable µ. We can write the Lagrangian and rearrange
to get

L(ν1, . . . ,ν |A|,λ) =

∑
a∈A

min
νa∈LGa

(
sa(ν

a) + ∑
i∈Va

θa
i (λ)

Tνa
i + ∑

(i,j)∈Ea

θa
ij(λ)

Tνa
ij

)
,

with

θa
i (λ) = λa

i −
1

|A(i)| ∑
a′∈A(i)

λa′
i

θa
ij(λ) = λa

ij −
1

|A(i, j)| ∑
a′∈A(i,j)

λa′
ij .

The Lagrange multipliers vector λ is of the same length as all the ν
concatenated together, where for variables that are only replicated once,
the corresponding Lagrange multiplier can be dropped. We can think
of the potentials as being a function of λ and thus the dual problem
of (3.15) is given by

max
λ

∑
a∈A

min
νa∈LGa

sa(ν
a,λ). (3.16)

Here sa(νa,λ) is defined by

sa(ν,λ) := ∑
i∈Va

θ̂a
i (λ)

T
νi + ∑

(i,j)∈Ea

θ̂a
ij(λ)

T
νij − ρηaHa

tree(ν),
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and the modified potentials are given as:

θ̂a
i (λ) = θ̂i + θ

a
i (λ)

θ̂a
ij(λ) = θ̂ij + θ

a
ij(λ).

All the slave computations can be carried out exactly using the sum-
product algorithm. For the maximization w.r.t. λ we use the Fast Itera-
tive Shrinkage-Thresholding (FISTA) algorithm (Beck and Teboulle 2009),
a modern variant of Nesterov’s traditional fast gradient method (Nes-
terov 1983). Our dual decomposition approach is very similar to (Savch-
ynskyy et al. 2011), with two key differences. First, the authors study
only a specific choice of the decomposition for the 4-connected grid
graph in which each node marginal is replicated twice and each edge
is only considered once. Second, we are also interested in settings
of ρ � 0, which is not meaningful in the context of the standard LP

relaxation.
The algorithm we used for solving the master problem is given in Al-

gorithm 3.2. It is based on FISTA descent as described in (Vandenberghe
2012). In the algorithm f (λ) denotes the dual objective given in (3.16)
for the dual variables λ.

Algorithm 3.2 FISTA ascent for the master problem in (3.16).

1: initialize λ(0) = v(0) = 0, k = 1.
2: repeat
3: θk = 2/(k + 1).
4: y = (1− θk)λ

(k−1) + θkv
(k−1).

5: u = y + tk∇ f (y), perform line-search for tk.
6: ensure ascent for λ(k):

λ(k) =

{
u f (u) ≥ f (λ(k−1))

λ(k−1) otherwise.

7: v(k) = λ(k−1) + 1
θk
(u− λ(k−1)).

8: k = k + 1.
9: until converged.

10: return λ(k−1).

As a stopping criteria we use a minimum gradient norm change
condition together with a limit on the number of iterations. The line

73



lpqp for mpe inference

search for tk is given in Algorithm 3.3. The line-search is simpler than in
the standard FISTA algorithm, as for the objective in (3.16), no proximal
operations are required. The line search increases sufficient advance
and guarantees a favorable convergence rate. Alternatively, instead

Algorithm 3.3 The line search used inside the FISTA algorithm.
1: initialize 0 < β < 1, t0 any positive value.
2: t = tk−1.
3: repeat
4: u = y + t∇ f (y).
5: fsq = f (u) + t

2‖∇ f (y)‖2.
6: if f (u) < fsq then
7: t = βt.
8: end if
9: until f (u) ≥ fsq

10: return t.

of using the accelerated first-order methods described here, it is also
possible to directly use L-BFGS for the maximization of the dual objective
in (3.16).

3.4.5 Entropy-augmented LP Solvers

We would like to contrast the LPQP algorithm to some existing message-
passing solvers for the LP relaxation. In practice often Sequential
Tree-Reweighted Message Passing (TRWS) (Kolmogorov 2006) or Max-
Product Linear Programming (MPLP) (Sontag et al. 2008) are used to
solve the LP relaxation. However, these coordinate-descent algorithms
all suffer from the problem that they might get stuck and generally do
not converge to the minimum of the linear program.

Therefore, recently, several works (Jojic, Gould, and Koller 2010;
Savchynskyy et al. 2011) proposed to smooth the LP objective by adding
a term that favors entropic marginals. The merit of this additional
term is in overcoming the non-smoothness of the objective. In order to
ultimately solve the original LP, these entropy-augmented solvers pro-
gressively lower the entropy term. Naturally, the convergence of these
algorithms is fairly fast in the beginning. This line of research originates
in Nesterov’s work on fast gradient methods (Nesterov 1983; Nesterov
2005). Another, related line of research is based on adding a quadratic
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proximal term to the LP objective. Message-passing algorithms based
on the Alternating Direction Method of Multipliers (ADMM) (Boyd et
al. 2011) are for example derived in (Martins et al. 2011; Meshi and
Globerson 2011). Contrary to the methods based on smoothing, for
these augmented Lagrangian approaches, the influence of the proximal
term however does not need to be decreased.

The proposed LPQP solvers have the opposite behavior with respect
to the smoothness of the objective, which is controlled through ρ. The
influence of the entropy term is increased through the progression of
the algorithm, leading to favorable convergence properties.

3.4.6 Convergence of the LPQP Algorithms

Lemma 3.1. The concave-convex procedure in Algorithm 3.1 converges to a
stationary point of the LPQP objective in (3.5) with ρ = ρfinal, the parameter
value reached when the marginals do not change further.

Proof. It was shown in (Sriperumbudur and Lanckriet 2009) that the
CCCP with a convex constraint set converges to a stationary point of the
objective. In the last DC iteration, a CCCP is solved with ρ = ρfinal.

3.5 related work

The work in (Kumar, Zilberstein, and Toussaint 2012) is most closely
related to our approach. Instead of enforcing the constraint for all
the edges, as done in our work, (Kumar, Zilberstein, and Toussaint
2012) suggests to enforce the constraint for only a subset of the edges.
For these edges the constraint is however not enforced by a penalty
function, but rather by dropping the auxiliary pairwise variables from
the objective and replacing them by quadratic terms. Kumar, Zilber-
stein, and Toussaint (2012) derive a custom message-passing algorithm
similar to earlier work in (Kumar and Zilberstein 2011). Their message-
passing scheme does however lack the connections to known entropy-
augmented LP solvers.

The idea of a gradual enforcement of the constraints through a
penalty function is relatively well-known and at least dates back to
the work on graduated non-convexity (Blake and Zisserman 1987) for
visual reconstruction. The same idea is also used in simulated and
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deterministic annealing (Kirkpatrick, Gelatt, and Vecchi 1983; Hofmann
and Buhmann 1997) in the context of Gibbs sampling.

3.6 experiments

We use LPQP-U to refer to the implementation of the uniform weighting
of the edges, and LPQP-T for the tree-based weighting. In the experi-
ments where the graph did not have a natural decomposition, we used
a depth-first search algorithm to construct a tree decomposition in a
greedy fashion for LPQP-T.

benchmarked methods We compare the performance of LPQP-U

and LPQP-T with the widely used MPE algorithms, TRWS (Kolmogorov
2006) and MPLP (Sontag et al. 2008), both of which are LP relaxations.
For both algorithms we used the implementation made available by the
authors. These algorithms represent different trade-offs in performance.
TRWS is a highly efficient message-passing algorithm for the standard LP

relaxation. It is much faster than the MPLP, especially on large instances
where the MPLP convergence is pretty slow. MPLP on the other hand,
initially solves the LP relaxation over the local polytope, and in later
iterations includes additional summation constraints over sets of three
or four variables. This strategy naturally leads to lower (better) energy
solutions, on instances where the LP relaxation is not tight. The MPLP

was shown to identify the global optimum for some problems.

performance measures In this work we mainly compared the
quality of the solutions, which in the MPE setting is most naturally
measured by the energy associated with an assignment (3.1). Strictly
comparing energy values is problematic for two reasons. The values
lack proper scaling required for quantitative comparison of different
results on the same problem instance, and are not comparable across
instances. We therefore exercise the following scoring procedure. Let
e1, . . . , eJ denote the energies of the compared solutions, we set

si =
max1≤j≤J(ej)− ei

max1≤j≤J(ej)−min1≤j≤J(ej)
(3.17)

as the score of the i-th method. This scheme assigns the worst and
the best methods, scores of zero and one respectively. The remaining
methods get a fraction relative to their value between the best and
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the worst result. This procedure is not flawless since the scores are
still computed relative to the worst energies. It was most often the
case though, that TRWS was the lowest scoring method. Being an often
used algorithm, using it as a normalizing measure is in our opinion
a sensible choice. In experiments where the optimal value is known,
we use this value instead of min1≤j≤J ej. In addition to comparing the
quality of the solution, we comment about the trends in the efficiency
(run-time) of the various methods.

3.6.1 Synthetic Potts Model Data

M (size) 60 90 120
K (# states) 2 5 2 5 2 5

σ = 0.05
MPLP 0.71 0.99 0.51 0.96 0 0.95
LPQP-U 0.97 0.99 0.97 1 0.98 1
LPQP-T 1 0.97 1 0.98 1 0.98
TRWS 0 0 0 0 0.39 0

σ = 0.5
MPLP 1 1 1 1 1 0.99
LPQP-U 0.99 0.92 0.99 0.91 1 0.94
LPQP-T 0.99 0.95 0.99 0.94 0.99 0.96
TRWS 0 0 0 0 0 0

Table 3.1: Averaged scores achieved by the MPE solvers on the synthetic
grid data. The scores, computed according to (3.17), assign
in each run 1 and 0 to the best and the worst objective values.
The remaining algorithms get a fractional score reflecting
their relative objective value.

We follow a similar experimental setup as in (Ravikumar, Agarwal,
and Wainwright 2010). The graph is a 4-nearest neighbor grid of varying
size. We used M = 60, 90, 120 where M is the grid side-length, and
M2 is the overall number of variables. We used K = 2 and K = 5
for the number of states. The unary potentials were randomly set
to θi;k(yi) ∼ Uniform(−σ, σ), and for σ we used values in [0.05, 0.5].
Note that the problem instance gets harder for small values of σ, this
parameter can be understood as the signal-to-noise ratio. The pairwise
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potentials θij(yi, yj), were set to penalize agreements or disagreements
of the labels, by an amount αij ∼ Uniform(−1, 1), chosen at random.
We set θij(yi, yj) = 0 if yi 6= yj and αij otherwise. In this experiment we
choose the graph decomposition for the LPQP-T solution as the vertical
and horizontal split of the grid edges (see Figure 3.2, left). The two
trees have all the original nodes in common, but no overlapping edges.

The results of the comparison using the performance measure given
in (3.17), are presented in Table 3.1. For each choice of parameters,
we averaged the scores of 5 runs. Furthermore, Figure 3.5 shows the
progress of the objective during a run of the LPQP-U algorithm.
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Figure 3.5: Development of the different objectives (for the same µ)
during a run of LPQP-U. The decoded objective refers to the
current solution independently rounded to integer values.
The vertical lines show iterations where ρ was increased.
The horizontal lines show the energy of the solution found
by TRWS and MPLP, respectively. In the end the auxiliary
pairwise variables are consistent with the unary variables,
and hence the QP, the LPQP-U and LP objectives all coincide.

In terms of running time, TRWS was always first to output a solution,
followed by the LPQP algorithms. MPLP was always slower and on
the larger instances did not converge within a predefined maximal
time. We therefore restricted the number of tightening iterations of
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MPLP to a maximum of 1000. A tightening iteration includes additional
constraints into the local marginal polytope. Even after this change,
MPLP was still considerably slower than the other algorithms. Between
the LPQP algorithms, the LPQP-U was most often faster than LPQP-T.

As we expect, TRWS returned the worst assignment on almost all
configurations. The energies obtained by LPQP-U, LPQP-T and MPLP

were in general very close. We observe that both of the LPQP algorithms,
returned slightly better solutions in comparison to the MPLP, when the
potentials were sampled with lower signal-to-noise ratio σ.

The run time of LPQP-T seems to be mostly influenced by the structure
of the decomposition. In later experiments where the decomposition
consisted of a larger number of trees with more variables in common,
the LPQP-T was significantly slower compared to the LPQP-U. In terms
of the energy of the solutions, the two algorithms were very similar.
For this reason we report from now on the LPQP-U only. The LPQP-T can
still be beneficial in settings where the computations are performed on
a distributed system.

Figure 3.6 shows the energy of the solution as well as the run time of
the LPQP algorithms for different initial ρ0 for a grid graph of size 40×
40 with K = 3. We can see that for smaller values of ρ0 one generally
obtains better solutions. For larger values of ρ0, the optimization
problem becomes more and more similar to the standard QP relaxation,
as violations in the pairwise marginals are strongly penalized. The run
time of the algorithms however also increases substantially for smaller
ρ0, especially for LPQP-T.

3.6.2 Protein Design and Side-chain Prediction

The protein inference problem discussed in (Yanover, Meltzer, and
Weiss 2006), consists of two tasks: protein side-chain prediction and pro-
tein design. For the protein prediction task, it was shown in (Yanover,
Meltzer, and Weiss 2006) that only for 30 out of the 370 protein pre-
diction instances, the LP relaxation is not tight. For 28 of them, the
true MPE was computed using general integer programming techniques.
Figure 3.7 visualizes the results of LPQP and TRWS on these instances.
LPQP found the global minimum of roughly 2/3 of these more difficult
instances. On the remaining 340 instances, the LP is tight. The LPQP

found the global optimum in all but three cases (results are not shown).
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Figure 3.6: Run time (dashed line) and energy of the solution (solid
line) found by the LPQP-U and LPQP-T algorithm as a function
of the initial ρ0. For smaller ρ0 the run time of LPQP-T is
much worse affected than the one of LPQP-U. TRWS achieves
a solution with an energy of −632.

MPLP was applied to this task in (Sontag et al. 2008), and achieved the
global optimum on all instances.

The protein design task consists of 97 instances. We used MPLP to
compute the global optimum, but for one of the instances, MPLP did
not finish within a time-budget of 7 days. The average scores for the
remaining 96 instances are as follows. LPQP-U: 0.93, MPLP: 1 and TRWS:
0.03. The average energies are: LPQP-U: −184.06, MPLP: −184.60, TRWS:
−173.55. The QP message-passing algorithm in (Kumar and Zilberstein
2011), was tested on this task as well. The evaluation criteria used
in this work was the average (across the 97 instances) percentage of
the optimal value. While the reported average value in (Kumar and
Zilberstein 2011) is 97.7%, our solution achieves 99.7% percentage of
the optimal value on average.

3.6.3 Decision Tree Fields

As a last experiment we apply our LPQP algorithm to the recently pub-
lished “hard discrete energy minimization instances” dataset (Nowozin
et al. 2011), available on the authors website. The task is to fill in, or
inpaint, a blanked out area in a binary image of Chinese handwritten
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Figure 3.7: Protein prediction results for instances where the LP is not
tight. LPQP-U improves on TRWS in all but one cases. For 20
of the 28 instances LPQP-U finds the true MPE.

characters, see Figure 3.8. The dataset consists of 100 energy minimiza-
tion instances, and comes with approximate MPE solutions obtained
using Simulated Annealing (SA) inference, which was found to work
better than TRWS. For 43 instances the LPQP algorithm obtained better
solutions than the previously best known solutions. Figure 3.8 visual-
izes some of the instances where the LPQP algorithm leads to a better
solution. We observed that the SA solutions seem to hallucinate too
much regularity which is not supported by the underlying energy. The
scoring of the three algorithms is as follows. LPQP-U: 0.84, SA: 0.74 and
TRWS: 0.21. We failed to apply MPLP as the tightening operation did not
succeed and the program segfaulted.

3.7 conclusions

This chapter introduced a novel formulation for MPE inference in graph-
ical models. The approach combines the LP and QP relaxation terms
through a KL divergence measure. The resulting problem, albeit being
non-convex, gives rise to efficient algorithms built upon known LP

solvers. In almost all experiments we found our LPQP solvers to find
better solutions than TRWS. Further, the algorithm is competitive with
MPLP in terms of solution, but often more efficient.
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Figure 3.8: Results for the Chinese character inpainting dataset. Top: re-
sults obtained by LPQP-U. Middle: solutions from (Nowozin
et al. 2011) obtained by simulated annealing. Bottom: Energy
difference between the simulated annealing solution and
the LPQP solution, the larger the value is, the better the LPQP

solution is.

As the LPQP approach can also be understood as a way to perform
rounding of an LP solution, it would also be possible to combine LPQP

with MPLP to round the solution, in case MPLP can not find any addi-
tional constraints to tighten the outer bound.

Another promising direction for future work is to investigate whether
one could select the tree decompositions in LPQP-T depending on the
value of the penalty function on the edges.
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4
L E A R N I N G W I T H H I G H - O R D E R L O S S E S

In all the applications of structured models studied so far we have only
considered low-order models, e.g. models with only pairwise dependen-
cies. The inability of pairwise models to capture high-order dependen-
cies between random variables restricts their expressive power, and
renders them poorly suitable to represent the data well (Sudderth and
Jordan 2008). Models containing higher-order factors, on the other hand,
are able to encode complex dependencies between groups of variables,
and can hence encourage solutions which match the statistics of the
ground truth solution better (Potetz 2007; Roth and Black 2009; Wood-
ford, Rother, and Kolmogorov 2009). However, the high computational
cost of performing MPE inference in such models has inhibited their
use (Lan et al. 2006). Instead, there has been a widespread adoption
of the simpler and less powerful pairwise CRF models which allow
efficient inference (Szeliski et al. 2008).

This chapter considers a middle ground where in training one is
willing to invest in more expensive high-order computations, but at
test time only simple and efficient MPE decoding for pairwise models
is required. We introduce an exact learning algorithm that estimates
the parameters of a pairwise CRF model according to a restricted class
of high-order losses. As the loss term does not enter the MPE prediction,
at test time the prediction task reduces to a simple pairwise energy
minimization problem.

More specifically, we consider the margin rescaled maximum-margin
learning setting for a loss function ∆y?(y). The loss term allows a data
scientist to guide the parameter learning to focus on specific errors
(see Section 2.1). In an ideal world one would like the loss function
to match the subsequent evaluation of the structured classifier. Most
previous work on structured output learning has considered simple
choices of the loss function, such as the Hamming loss or the squared
loss, which lead to tractable learning algorithms (Szummer, Kohli, and
Hoiem 2008). However, in real world applications, researchers might
prefer more general loss functions which penalize deviations in some
higher-order statistics.
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As an example, the PASCAL Visual Object Classes (VOC) challenge (Ev-
eringham et al. 2010) evaluates the overlap between a predicted bound-
ing box Bp and the ground-truth bounding-box Bgt:

a0 =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
.

Here Bp ∩ Bgt denotes the intersection of the two bounding boxes and
Bp ∪ Bgt the union. The VOC challenge considers a detection bounding
box Bp to be correct, if a0 is larger than 0.5. Clearly this information is
valuable when the parameters of an object detector are estimated. Let
us assume that some coding of a bounding box in terms of an output
variable vector y is given. Two natural choices for the loss term ∆y?(y)
in terms of a0 are:

∆voc
y? (y) = a0 or ∆voc

y? (y) =

{
1 if a0 < 0.5

0 otherwise.

As another example, in medical image analysis for some diagnostic
scenarios a physician might be interested in the area of a segmentation
of a tumor that is under investigation. Depending on the number of
tumor pixels different treatments can then be initiated. It is important
to note, that rather than estimating the label of every individual pixel in a
segmentation, the physician is only interested in the area covered by tumor
cells. When applying a structured classifier to such a setting, this
information should be provided by means of a loss function to the
learning algorithm. Instead of the Hamming loss, a more suitable loss
function would be a function that considers the absolute difference
between tumor pixels in the ground-truth segmentation and the tumor
pixels in the predicted segmentation. However, as we will see, both
the VOC bounding box loss and the area loss do not factorize into
individual variable terms such as the Hamming loss. This renders
maximum-margin learning intractable for these higher-order losses.

This chapter is organized as follows: We introduce the problem
setting and loss-augmented inference in Section 4.1, followed by a
discussion of low-order and high-order loss functions in Section 4.2.
In Section 4.4 we introduce an efficient algorithm for performing loss-
augmented inference for a restricted class of high-order loss functions. It
uses the lower-envelope representation of higher-order functions (Kohli
and Kumar 2010) to transform them to pairwise functions. We test the
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efficacy of our approach on the problem of foreground-background
segmentation in Section 4.5. The experimental results show that our
method is able to obtain parameters which lead to better results com-
pared to the traditional approach.

4.1 problem setting and loss augmented inference

In this work we consider binary image labeling problems for a graph
G = (V , E) and output variables yi ∈ {0, 1} ∀i. The energy is assumed
to have the form

E(y,x,w) = −〈w,φ(x,y)〉
= ∑

i∈V
θi(yi,x;wu) + ∑

(i,j)∈E
θij(yi, yj,x;wp).

We leave the exact form of the unary and pairwise potentials unspecified
as this is application dependent. The dependence of the potentials
on the parameters is assumed to be linear, the standard assumption
throughout this thesis. Furthermore, we assume that the pairwise
potentials are submodular (or equivalently associative). We restrict
ourselves to MPE prediction functions of the form

y? = argmin
y∈Y

E(y,x,w). (4.1)

Due to the binary state space of the individual output variables and the
submodularity assumption, exact MPE prediction as in (4.1) is efficiently
tractable using the graph-cut algorithm, see Subsection 2.7.6.

Our goal here is to learn the parameters w using the margin-rescaled
maximum-margin framework for a high-order loss function. We will
make the definition of a high-order loss more precise in Section 4.2.
For now one can think of a high-order loss as a complex function
comparing a prediction and the ground-truth labeling. The efficient
solution of the loss augmented inference problem poses the main obstacle
to applying maximum margin learning to a structured problem; as most
popular solvers for maximum-margin learning are based on a repetitive
evaluation of the loss augmented inference oracle. The cutting-plane
algorithm discussed in Subsection 2.5.2, stochastic subgradient descent
or the Frank-Wolfe algorithms which we recently introduced in (Lacoste-
Julien et al. 2013) are examples of such maximum-margin solvers that
require an oracle for loss augmented inference. In our work we will
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therefore focus on the solution of the loss augmented inference problem,
immediately giving rise to several possible ways on how to solve the
overall maximum-margin learning problem. In the experiments we will
use the cutting-plane algorithm, but the aforementioned solvers could
be used instead. Formally, the loss augmented inference problem is
given by

min
y∈Y

E(y,x,w)− ∆y?(y). (4.2)

The energy minimization problem in (4.2) differs from the one in (4.1)
only in that the negative loss term is added to the energy. Depending
on the form of the loss term, this can render the inference problem
intractable. The loss augmented inference problem is investigated in
detail in Section 4.4. The next section discusses loss functions in general
and introduces the label-count loss, which is promoted in our work.

4.2 low-order and high-order losses

Maximum-margin learning leaves the choice of the loss function ∆y∗(y)
unspecified. The loss allows the researcher to adjust the parameter
estimation to the evaluation which follows the learning step. In our
work we differentiate between low-order losses, which factorize, and
high-order losses, which do not factorize. Factorization is considered to
be a key property of a loss to maintain computational tractability of the
loss augmented inference.

4.2.1 Low-Order Loss Functions

For image labeling in computer vision a popular choice is the pixelwise
error, or also Hamming error (see Section 2.1). It is defined as:

∆Hamming
y? (y) =

1
|V| ∑i∈V

yi 6= y?i .

For image labeling problems, it tries to prevent solutions with high
pixel labeling error from having low energy under the model compared
to the ground truth.
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4.2.2 High-Order Loss Functions

In many machine learning applications, practitioners are concerned
with errors other than the simple Hamming loss. This is especially the
case in medical imaging tasks involving segmentations of particular
tissues or tumors. In such problems, radiologists and physicians are
sometimes more interested in measuring the exact volume or area of
the tumor (or tissue) to analyze if it is increasing or decreasing in size.
This preference can be handled during the learning process by using a
label-count based loss function.

More formally, consider a two-label image segmentation problem
where we have to assign the label 0 (representing ‘tumor’) or 1 (repre-
senting ‘non-tumor’) to every pixel/voxel in the image/volume. The
area/volume based label-count loss function in this case is defined as:

∆Count
y∗ (y) =

1
|V|

∣∣∣∣∣∑i∈V yi −∑
i∈V

y?i

∣∣∣∣∣ . (4.3)

Such a loss function prevents image labelings (segmentations) with
substantially different area/volume compared to the ground truth to
be assigned a low energy under the model. As we will show, despite
the high-order form of the label-count loss, learning with it in the
maximum-margin framework is tractable.

It is easy to show that the label-count loss is a lower bound on the
Hamming loss:

∆Count
y∗ (y) ≤ ∆Hamming

y∗ (y).

We would like to point out that in case a segmentation is desired,
the label-count loss will most likely not lead to accurate results, as it
does not relate the location of the foreground pixels to the ones in the
ground-truth. In our experiments we however did not observe severe
degradations of the segmentation accuracy. This can potentially be
attributed to the low-dimensional weight vector and relatively strong
unary features. In case an accurate segmentation and label-count is
needed, one could also combine the two losses. One advantage of the
label-count loss is that it requires much weaker supervision, as only the
number of foreground pixels is required, rather than a pixel-accurate
segmentation.
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4.3 related work

In (Lempitsky and Zisserman 2010) a learning approach for counting is
introduced. The major difference to our work stems from the model
that is learned. In their work a continuous regression function is trained,
which predicts for each pixel a positive scalar real value independent
of all its neighboring pixels. In our work a CRF is used, which in-
cludes dependencies among variables, only the loss term in learning is
changed. (Gould 2011) discusses maximum-margin parameter learning
in graphical models that contain potentials with a linear lower envelope
representation. However, the loss function used in their work is still
restricted to be a simple Hamming loss. The idea of learning with
higher-order losses is also studied in (Tarlow and Zemel 2011; Tarlow
and Zemel 2012) and (Ranjbar et al. 2012). They discuss several higher-
order loss functions, but only approximate algorithms are presented.
To the best of our knowledge, our work introduces for the first time a
subclass of high-order loss functions, for which structured maximum
margin learning remains tractable.

4.4 lower envelopes representation

Even on its own, the problem of minimizing a general energy function
of discrete variables is a NP-hard problem. In this chapter, due to the
assumptions of submodularity and binary variables, the energy mini-
mization problem miny E(y,x,w) can be solved exactly. The presence
of the loss term in the loss augmented energy minimization problem
in (4.2) has the potential to make it harder to minimize. The Hamming
loss, however, has the nice property that it decomposes into unary
terms which can be integrated into the unary energy terms. Therefore
the loss augmented inference problem in this case is not harder than
standard inference:

min
y

E(y,x,w)− ∆Hamming
y? (y) =

min
y

∑
i∈V

[
θi(yi,x;wu)− 1

|V|I[yi 6=y?i ]
(yi)

]
︸ ︷︷ ︸

:=θ̃i(yi)

+ ∑
(i,j)∈E

θij(yi, yj,x;wp).

We attribute the popularity of the Hamming loss in image labeling at
least partially to the fact that loss augmented inference is no harder
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than the initial model energy minimization. In many applications there
would exist more meaningful loss functions, that however complicate
the loss augmented inference and are therefore not used in practice.

4.4.1 Compact Representation of High-Order Losses

While it is easy to incorporate the Hamming loss in the learning for-
mulation, this is not true for higher-order loss functions. In fact, a
general M order loss function defined on K-state variables can require
up to KM parameters for just its definition. In recent years a lot of
research has been channeled towards developing compact representa-
tions of higher-order functions (Kohli, Kumar, and Torr 2009; Rother
et al. 2009; Kohli and Kumar 2010). In particular, Kohli and Kumar
(2010) proposed a representation based on upper and lower envelopes
of linear functions which enables the use of many popular classes of
higher-order potentials employed in computer vision. More formally,
they represent higher-order functions as:

f h(y) = ⊗q∈Q f q(y)

where ⊗ = {max, min}, andQ indexes a set of linear functions, defined
as

f q(y) = µq + ∑
i∈V

∑
a∈L

ν
q
iaIa(yi)

where the weights ν
q
ia and the constant term µq are the parameters of

the linear function f q(·), and the function Ia(yi) returns 1 if variable yi
takes label a and returns 0 for all other labels. Finally, L denotes the set
of possible states for an output variable, for example in binary image
denoising L = {0, 1}. While ⊗ = min results in a lower envelope of
the linear functions, ⊗ = max results in the upper envelope.

The upper envelope representation, in particular, is very powerful
and is able to encode sophisticated silhouette constraints for 3D re-
construction (Kohli and Kumar 2010; Kolev and Cremers 2008). It can
also be used to compactly represent general higher-order energy terms
which encourage solutions to have a particular distribution of labels.
Woodford, Rother, and Kolmogorov (2009) had earlier shown that such
terms were very useful in formulations of image labeling problems
such as image denoising and texture synthesis, and led to better results.
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The higher-order label-count loss defined in (4.3) can be represented
by taking the upper envelope of two linear functions f 1(·) and f 2(·)
that are defined as:

f 1(y) =
1
|V|

(
∑
i∈V

yi −∑
i∈V

y?i

)
, (4.4)

f 2(y) =
1
|V|

(
∑
i∈V

y∗i −∑
i∈V

yi

)
. (4.5)

This is illustrated in Figure 4.1a.

∆Count
y∗ (y)

∑i∈V yic

f2(y)

f1(y)

(a) Upper envelope.

−∆Count
y∗ (y)

∑i∈V yic

f2(y)

f1(y)

(b) Lower envelope.

−∆Capped
y∗ (y)

∑i∈V yic

f2(y)

f1(y)

f3(y)

(c) Capped loss.

Figure 4.1: Upper and lower envelope representations of the label-
count loss and its negation. Here c := ∑i∈V y∗i . Interest-
ingly, as the loss enters the loss-augmented energy with a
negative sign, the resulting energy minimization problem
miny E(y,x,w)− ∆count

y∗ (y) becomes tractable. (c) shows an
example of a loss which can be described as the lower en-
velope of three linear functions. For visualization purposes
we dropped the scaling by 1/|V| in front of the loss.

4.4.2 Minimizing Loss Augmented Energy Functions

Although upper envelope functions are able to represent a large class
of useful higher order functions, inference in models containing upper
envelope potentials involves the solution of a hard min-max optimiza-
tion problem (Kohli and Kumar 2010). Interestingly, the loss term in
the loss-augmented energy minimization problem (4.2) has a negative
coefficient, which allows us to represent the label-count loss (4.3) by
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the lower envelope of the functions defined in (4.4) and (4.5) (visualized
in Figure 4.1b).

Kohli and Kumar showed that the minimization of higher order func-
tions that can be represented as lower envelopes of linear functions can
be transformed to the minimization of a pairwise energy function with
the addition of an auxiliary variable. In fact, in some cases, the result-
ing pairwise energy function can be shown to be submodular (Boros
and Hammer 2002; Kolmogorov and Zabih 2004) and hence can be
minimized by solving a minimum cost s-t-cut problem (Kohli, Ladicky,
and Torr 2009). This is the case for all higher-order functions of Boolean
variables which are defined as:

f h(y) = F
(

∑
i∈V

yi

)
,

where F is a concave function. The worst case time complexity of the
procedure described above is polynomial in the number of variables.
A related family of higher-order submodular functions which can be
efficiently minimized was characterized in (Stobbe and Krause 2010).
Next, we consider the loss augmented inference for the label-count loss
in more detail.

4.4.3 Label-Count Loss Augmented Inference

The minimization of the negative label-count loss (4.3) can be trans-
formed to the following pairwise submodular function minimization
problem (ignoring the scaling by 1/|V|):

min
y
−∆Count

y∗ (y) = min
y
−
∣∣∣∣∣∑i∈V yi −∑

i∈V
y?i

∣∣∣∣∣ (4.6)

= min
y,z∈{0,1}

−z

(
∑
i∈V

yi −∑
i∈V

y?i

)

− (1− z)

(
∑
i∈V

y?i −∑
i∈V

yi

)

= min
y,z∈{0,1}

2z

(
∑
i∈V

y?i −∑
i∈V

yi

)
+ ∑

i∈V
yi −∑

i∈V
y?i .
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The full energy minimization for the label-count loss augmented infer-
ence reads as follows

min
y,z∈{0,1}

E(y,x,w)+
1
|V|

(
2z

(
∑
i∈V

y?i −∑
i∈V

yi

)
+ ∑

i∈V
yi −∑

i∈V
y?i

)
(4.7)

As we assume that the original energy E(y,x,w) is submodular, the
pairwise problem above is exactly solved by graph-cut (Boykov 2001).
Next, we illustrate the construction of the pairwise graphical model,
which can then be solved using graph-cut. We add one node for the
variable z to the original graph. This auxiliary node is then connected
to every segmentation variable yi, adding a total of |V| new edges to
the graph. The pairwise energy construction is visualized in Figure 4.2.
Unfortunately, we found the de-facto standard computer vision graph-

z

yi
0

1

z
0 1
0
1
V

0
− 1
V

z
0 1
−c c

Figure 4.2: Pairwise graph used for solving the label-count loss aug-
mented inference problem. The potentials of the edges
connecting the segmentation nodes yi to the auxiliary node
z (which are shown in blue) are visualized to the left. The
unary potential of the auxiliary variable z to the right, where
c := 1

|V| ∑i y∗i . Standard graph-cut solvers can be applied to
this problem.

cut algorithm by Boykov and Kolmogorov (2004) to run fairly slowly on
these problem instances. We attribute this to the dense connectivity of
the auxiliary node z. This problem is in theory, and as is turns out also
in practice, solved by the recent Incremental Breadth First Search (IBFS)
graph-cut algorithm introduced in (Goldberg et al. 2011). We found this
algorithm to be roughly an order of magnitude more efficient than the
Boykov-Kolmogorov algorithm. Learning on a small subset of the data
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discussed in the next section took two minutes when IBFS was used and
around 25 minutes with the Boykov-Kolmogorov algorithm.

Alternatively, for minimizing the loss augmented energy with a
single Boolean z, as in (4.7), one can solve the minimization efficiently
by performing energy minimization twice in the original graph (for
z = 0 and z = 1). Each choice of z results in different unaries. This
approach does however not scale to the case where the loss augmented
energy has multiple variables z, as the number of sub-problems grows
exponentially. If we have a loss function with 10 zs one will have to
perform the minimization 210 times. The case of several variables z
could potentially be interesting if one wants to penalize the label-count
loss within several bounding boxes in an image.

4.5 experiments

We implemented the maximum margin learning in Matlab. For solv-
ing the QP the MOSEK solver is used. Loss augmented inference is
performed by IBFS, which is implemented in C++ through a MEX wrap-
per. The IBFS code was downloaded from the authors website and
modified to support double precision energies (as opposed to integer
precision). Submodularity of the model is explicitly enforced in training
by ensuring that all the edge potentials off-diagonal energies are larger
than the diagonal energies. This can be achieved by adding additional
constraints to the QP. We do so by the ensuring that the non-diagonal
pairwise weight is positive. Combined with the fact that all the edge
features by construction are positive and the diagonal weights are set to
zero, this ensures submodularity. In all of the experiments the regular-
ization parameter λ is chosen on a validation set. The final results are
then generated from a held out test set. The running time of the label-
count loss based learning is roughly one order of magnitude slower
than the standard Hamming loss learning. The trick discussed earlier
of simply performing graph-cut inference twice for different unaries
should get the runtime increase down to a factor of around two.

4.5.1 Mitochondria Cell Segmentation

Counting tasks naturally arise in many medical applications. The
estimation of the progression of cancer in a tissue or the density of cells
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in microscope images are two examples. As a first experiment we study
the problem of counting the number of mitochondria cell pixels in an
image. The dataset is visualized in Figure 4.3. The images have been
provided by Ángel Merchán and Javier de Felipe from the Cajal Blue
Brain team at the Universidad Politécnica de Madrid. Three images

Figure 4.3: Electron microscopy image showing the mitochondria cells
in red.

are used for learning, two images for the validation and the remaining
five images for testing. The images have a resolution of 986 × 735.
The pairwise CRF consists of a unary term with three features (the
response of a unary classifier for mitochondria and synapse detection
and an additional bias feature). The pairwise term incorporates two
features (the color difference between neighboring pixels and a bias).
The results for four different random data splits are shown in Figure 4.4.
As expected the label-count loss trained model performs better than
the Hamming loss trained model if the label-count loss is used for the
evaluation and vice-versa if evaluated on the Hamming loss. The same
trend is observed if the 8-connected grid graph is used instead of the
standard 4-connected grid graph. We also compared our lower envelope
inference approach to the compose max-product algorithm (Duchi et al.
2006) which is used in (Tarlow and Zemel 2011; Tarlow and Zemel
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(a) Label-count loss evaluation.
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(b) Hamming loss evaluation.

Figure 4.4: Test set results for the mitochondria segmentation on four
random data splits. We plot the loss ratio of the Hamming
loss trained model and the label-count loss trained model.
If the label-count trained model performs better, the ratio is
larger than one and smaller than one, in case the Hamming
loss trained model is better. (a) Shows the results if the
label-count loss is used for the evaluation and (b) shows
the results if instead the Hamming loss is used for the
evaluation. As one would expect, the model that matches
the evaluation loss performs better, which shows that our
learning approach works well.

2012). Max-product inference is in general only approximate. However,
for the cell segmentation problem in combination with the label-count
loss, the solutions obtained using the two different loss augmented
inference algorithms were almost identical. The running time of the
two approaches is also comparable. Our inference algorithm is slightly
more efficient, but also more adapted to the count-loss.

4.5.2 Foreground-Background Segmentation

We check the effectiveness of the label-count loss foreground-background
segmentation on the Grabcut dataset (Blake et al. 2004). We use the
extended dataset from (Gulshan et al. 2010). The dataset consists of 151
images, each comes with a ground truth segmentation. Furthermore,
for each image an initial user seed is specified by strokes marking
pixels belonging to the foreground or to the background, respectively.
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As unary features we use the three color channels together with the
background and foreground posterior probabilities as computed by
the Gaussian mixture model algorithm used in Grabcut. Additionally
we also include a constant feature to correct for class bias. For the
pairwise features we use the color difference between the two pixels
and again a bias feature. The standard four-connected grid graph is
used as the basic model. Each edge is parametrized by the same pa-
rameter. We also experimented with extensions of this basic model: In
one variant we consider the eight-connected grid, in the other variant
each direction of the edge is parametrized using a different parameter.
The basic model is therefore specified by an eight dimensional weight
vector w, the eight-connected model where each direction has its own
parameter by a 14-dimensional w. For learning 60 images were used,
20 for the validation of the regularization parameter λ, the remaining
71 images were used for testing. Figure 4.5 shows some of the learned
segmentations and Figure 4.6 gives a comparison of the models trained
using the Hamming loss and the label-count loss. The results in Fig-
ure 4.6 show the loss ratio for four different data splits. As expected,
we observe that if the label-count loss is used for the evaluation, the
model that is trained using this loss performs superior and vice-versa
for the Hamming loss. The improvement is consistent across different
model structures as can be seen in Figure 4.6.

4.6 discussion

We have demonstrated, for the first time, how low-order models like
pairwise CRFs can be encouraged to preserve higher-order statistics by
introducing high-order loss functions in the learning process. The learn-
ing involves the minimization of the loss augmented energy, which we
show can be performed exactly for certain loss functions by employing
a transformation scheme. We demonstrate the efficacy of our method
by using a label-count loss while learning a pairwise CRF model for
binary image segmentation. The label-count loss function is useful for
applications that require the count of positively labeled pixels in an
image to match the count observed on a ground truth segmentation.
Our proposed algorithm enables efficient maximum margin learning
under the label-count loss, and leads to models that produce solutions
with statistics that are closer to the ground-truth, compared to solutions
of models learned using the standard Hamming loss.
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Hamming (c: 0.141, h: 0.141). Count (c: 0.047, h: 0.054). Ground-truth.

Hamming (c: 0.112, h: 0.112). Count (c: 0.059, h: 0.090). Ground-truth.

Hamming (c: 0.038, h: 0.114). Count (c: 0.002, h: 0.132). Ground-truth.

Figure 4.5: Segmentations on the test set for models trained using the
Hamming loss (left) and the label-count loss (middle). The
image on the right shows the ground-truth segmentation.
We show the measured label-count loss and Hamming loss
in brackets. The bottom row shows a case where the model
trained using the label-count loss shows a better count loss,
however the Hamming loss deteriorates due to the false
positives. For the first two images, the label-count loss
trained model even outperforms the Hamming loss trained
model in terms of Hamming loss.
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(a) Label-count loss evaluation.
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(b) Hamming loss evaluation.

Figure 4.6: Test set performance for the Grabcut dataset on four random
data splits. As in the mitochondria segmentation application,
we illustrate the loss ratio of the Hamming loss trained
model and the label-count trained model. A ratio larger
than one implies that the label-count trained model is better,
a ratio smaller than one that the Hamming trained model
performs better. (a) Shows the results if the label-count
loss is used for the evaluation and (b) shows the results if
instead the Hamming loss is used for the evaluation. As for
the mitochondria segmentation task, the experiments are
consistent with the theory in the sense that the model that
matches the evaluation loss performs better. The different
bars in the illustration show different model structures (4
vs. 8 grid and the same vs. different parametrization of the
edges).
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5
M A X I M U M E N T R O P Y A N D M A X I M U M M A R G I N

This chapter introduces a unified surrogate loss which generalizes the
CRF and the structured SVM. This framework allows us to analyze and
contrast the two different structured output learning approaches. A
continuous parameter interpolates between the two extreme cases and
gives rise to a family of learning approaches. Moreover, the surro-
gate loss is also applicable to latent variable models and direct loss
minimization, which we will demonstrate.

5.1 a unified loss for structured output learning

In this section we derive our generalized surrogate loss. First, the
CRF log-loss is modified through incorporating an inverse temperature
parameter. The concept of a margin is introduced into this modified
surrogate loss, resulting in a new family of surrogate loss functions.

As already introduced in Subsection 2.5.1, the CRF considers a log-
linear model

P(y|x,w) =
1

Z(x,w)
exp

(〈
w,φ(x,y)

〉)
,

with the partition function

Z(x,w) = ∑
y∈Y

exp
(〈
w,φ(x,y)

〉)
.

The log-loss can be derived as the negative log-likelihood of the proba-
bilistic conditional model

`ll(w,x,y) := − log P(y|x,w) = −
〈
w,φ(x,y)

〉
+ log Z(x,w).

Using the log-loss in the regularized training objective in (2.17) together
with an L2 regularizer corresponds to maximum-a-posteriori (MAP)
parameter estimation, where we assume a Gaussian prior on w.

The maximum margin principle gives rise to an alternative choice
for a structured surrogate loss which is employed in the structured
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SVM (see Subsection 2.5.2). The ground-truth output is compared to the
output that maximizes the inner product

`mm(w,x,y) :=−
〈
w,φ(x,y)

〉
+ max
y′∈Y

[
〈w,φ(x,y′)〉+ ∆y(y′)

]
. (5.1)

Here, ∆y(y′) ensures a margin between the ground-truth output y
and an output y′. ∆y(y′) is discussed in more detail in Section 2.1.
Sometimes we will find it more convenient to write the max-margin
loss using the difference of feature maps ψ(y′|x,y) := φ(x,y′)−φ(x,y):

`mm(w,x,y) := max
y′∈Y

[
〈w,ψ(y′|x,y)〉+ ∆y(y′)

]
.

5.1.1 Inverse Temperature

As it is done in (2.11), we now introduce a scalar parameter into the
log-linear model of the CRF which allows us to control the peakedness
of the distribution. For the posterior, we consider the Gibbs distribution
with an inverse temperature β ∈ R+:

Pβ(y|x,w) =
1

Zβ(x,w)
exp

(
β
〈
w,φ(x,y)

〉)
, (5.2)

with corresponding normalization constant

Zβ(x,w) = ∑
y∈Y

exp
(

β
〈
w,φ(x,y)

〉)
.

For β = 1 this reverts to the standard CRF. The inverse temperature β

does not have any influence on the MPE prediction for an input x:

fw(x) = argmax
y∈Y

Pβ(y|x,w) = argmax
y∈Y

〈w,φ(x,y)〉.

However, the learning objective is affected by the introduction of the
inverse temperature. For reasons that will become clear later on, we
choose to scale the per-example surrogate loss by 1/β. The negative
log-loss for an instance (x,y) thus becomes

− 1
β

log Pβ(y|x,w) = −
〈
w,φ(x,y)

〉
+

1
β

log ∑
y′∈Y

exp
(

β
〈
w,φ(x,y′)

〉)
.

Rearranging terms, it can be shown that the introduction of β is equiva-
lent to changing the L2 regularizer weight λ in a standard CRF objective
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5.1 a unified loss for structured output learning

to λ′ = λ/β (see below). Hence without further modification to the
surrogate loss, β is simply redundant. In the next sections we will show
that if the inclusion of the inverse temperature is combined with an
additional loss-term, interesting connections emerge.

Proof. Our goal here is to show that

argmin
w

N

∑
n=1
− 1

β
log Pβ(y

n|xn,w) +
λ

2
‖w‖2

2, (5.3)

is equivalent to ERM with the standard log-loss with regularizer param-
eter λ′ = λ/β.

argmin
w

N

∑
n=1
− 1

β
log Pβ(y

n|xn,w) +
λ

2
‖w‖2

2

⇔ argmin
w

N

∑
n=1
− log Pβ(y

n|xn,w) +
βλ

2
‖w‖2

2

⇔ argmin
w

N

∑
n=1
− log P(yn|xn,w) +

βλ

2

∥∥∥∥wβ
∥∥∥∥2

2

⇔ argmin
w

N

∑
n=1
− log P(yn|xn,w) +

λ

2β
‖w‖2

2.

And thus λ′ = λ/β.

5.1.2 Large Margin Learning

A standard CRF considers unbiased output distributions. Motivated by
the concept of large margin learning, we bias the conditional distribu-
tion of outputs y′, given the ground-truth output y, to have a large
margin for outputs y′ that are dissimilar. To do so, we assume that a
non-negative loss term ∆y(y′) is given (also see Section 2.1). The loss
term ∆y(y′) specifies a preference on the outputs y′ when compared
to the ground-truth output y. In the coming subsection we will in-
corporate the margin principle of structured SVMs into the conditional
probabilistic model given in (5.2).

5.1.3 Combining the Posterior and the Loss

The training phase exploits two sources of information: ∆y?(y) and
Pβ(y|x,w). In principle, there are many choices for combining the two
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sources over the same output variable y. Here, we specifically discuss
two choices corresponding to slack and margin rescaling in the structured
SVM (Tsochantaridis et al. 2005).

margin rescaling For a given ground-truth output y, the loss
∆y(y′) is transformed into conditional probabilities over outputs:

Pβ(y
′|y) ∝ exp

(
β∆y(y′)

)
. (5.4)

For outputs y′ which are very different from the ground-truth y, P(y′|y)
is large. In training this information is used to make such outputs to be
difficult to separate, forcing the classifier to ensure good classification
on these outputs. Pβ(y

′|y) is only leveraged on in training, in order
to bias the estimated posterior P(y|x,w) away from poor outputs y
according to the loss.

The first option of combining the posterior and error term is by
multiplying (5.2) and (5.4).

Pβ(y
′|y,x,w) ∝ Pβ(y

′|x,w)Pβ(y
′|y)

Ensuring normalization of the probability distribution leads to

Pβ(y
′|y,x,w) =

1
Zβ(y,x,w)

exp
(

β
〈
w,φ(x,y′)

〉
+ β∆y(y′)

)
, (5.5)

where the partition function is given by

Zβ(y,x,w) = ∑
y′∈Y

exp
(

β
〈
w,φ(x,y′)

〉
+ β∆y(y′)

)
.

Note that the distribution of an output y′ is now conditioned on the
true output y. We do this to ensure good separation of y to outputs y′

that are unfavorable according to ∆y(y′). In Section 5.2 we show that
combining the two posteriors by means of a product, corresponds to
margin rescaling in the structured SVM case.

For convenience, the loss is absorbed into the feature map by includ-
ing ∆y(y′) as an additional feature: φ∆(y

′|x,y) = [φ(x,y′)T, ∆y(y′)]T.
The w needs to be adjusted accordingly by w∆ = [wT, 1]T. The score of
the ground-truth output y remains unchanged by the introduction of
the loss, i.e., 〈w,φ(x,y)〉 = 〈w∆,φ∆(y|x,y)〉, as ∆y(y) = 0.

Under this transformation, the surrogate loss of an example (x,y)
is defined as the negative log-likelihood of the conditional probability
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in (5.5). As before, rescaling the surrogate loss by 1/β yields to the
soft-max loss:

`β(w,x,y) = −
〈
w∆,φ∆(y|x,y)

〉
+

1
β

log ∑
y′∈Y

exp
(

β
〈
w∆,φ∆(y

′|x,y)
〉)

. (5.6)

We advocate `β(w,x,y) as a surrogate loss for structured outputs, gen-
eralizing both CRF and structured SVM. Alternatively, one can rewrite
the soft-max loss as a single partition function by absorbing the ground-
truth contribution into the exponent:

`β(w,x,y) =
1
β

log ∑
y′∈Y

exp
(

β
〈
w∆,ψ∆(y

′|x,y)
〉)

. (5.7)

Here we define ψ∆(y
′|x,y) := [ψ(y′|x,y)T, ∆y(y′)]T.

slack rescaling An alternative option for combining the condi-
tional probability Pβ(y

′|x,w) with the loss ∆y(y′), corresponds to slack
rescaling in the structured SVM. The structured SVM with slack rescaling
differs in the constraint, but otherwise has the same objective as the
margin rescaled structured SVM in (2.22):

min
w,ξ

λ

2
‖w‖2

2 +
1
N

N

∑
n=1

ξn (5.8)

s.t. 〈w,φ(xn,yn)〉 − 〈w,φ(xn,y)〉 ≥ 1− ξn

∆yn(y)
∀y\yn.

Note that the ground-truth output yn is excluded from the constraint
set. The slack rescaled structured SVM can also be written as an ERM

for the surrogate loss by rewriting the constraint in terms of the slack
variable:

`sl
mm(w,x,y) := max

y′∈Y\y

[
∆y(y′)

(
1 + 〈w,ψ(y′|x,y)〉

)]
,

One desirable property of slack rescaling, contrary to margin rescaling,
is the property that the optimal weight of (5.8) is invariant to scaling of
the loss ∆yn(y). For additional details about the differences between
margin and slack rescaling, see (Tsochantaridis et al. 2005, Section 2.2.5).
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In our setting, slack rescaling corresponds to choosing the posterior
distribution over outputs as follows:

Psl
β (y

′|y,x,w) =
1

Zsl
β (y,x,w)

exp

(
β
(

1 +
〈
w,ψ(y′|x,y)

〉))∆y(y′)

,

with corresponding partition function Zsl
β (y,x,w). The posterior distri-

bution can be motivated by a soft-max of the scoring function which
is used in slack rescaling. The resulting scaled negative log-likelihood
that corresponds to the multiplicative factor in slack rescaling is given
by

`sl
β (w,x,y) =

1
β

log ∑
y′∈Y

exp

(
β∆y(y′)

(
1 +

〈
w,ψ(y′|x,y)

〉))
.

We will refer to this surrogate loss as the soft-max loss with slack rescaling.
Note that in this form there is no ground-truth term in front of the
sum over all the outputs y′. Again, the error term corresponds to a
modification of the feature map. Thus, we arrive at the soft-max given
in (5.7) where we use ψsl

∆ (y
′|x,y) = ∆y(y′)[ψ(y′|x,y)T, 1]T instead

of ψ∆(y
′|x,y). The reader should notice the non-linear nature of this

combination, which makes slack rescaling computationally more chal-
lenging than margin rescaling.

The probabilistic interpretation of margin rescaling is more appeal-
ing due to the factorization into two posterior distributions. We will
therefore concentrate our analysis on margin rescaling. Nevertheless,
most of the findings also hold for slack rescaling.

5.2 connections

In this section we will analyze the implications of the soft-max surrogate
loss in (5.6). Observe that the standard CRF surrogate loss is recovered
by setting β = 1 and using a loss ∆y(y′) = 0 ∀y′. We start our
analysis by first considering the limit case of β→ ∞ which leads to a
probabilistic interpretation of the structured SVM. We then derive the
dual, which shows a joint regularization by entropy and margin.
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5.2.1 Structured SVMs as a Limit Case

Lemma 5.1. The standard maximum margin loss used in the structured SVMs

is obtained for the choice β→ ∞.

Proof. The structured SVM is derived as a limit case of `β(w,x,y) for
β → ∞ by adopting the log-sum-exp “trick”, commonly used for
stable numerical evaluation of partition functions. The key idea is to
factor out the maximum contribution of the partition function. Denote
by y? = argmaxy′〈w∆,ψ∆(y

′|x,y)〉 the output with the largest score.
Substituting into (5.7) yields

`β(w,x,y) =
〈
w∆,ψ∆(y

?|x,y)
〉

+
1
β

log ∑
y′∈Y

exp

(
β
(〈
w∆,ψ∆(y

′|x,y)−ψ∆(y
?|x,y)

〉))
. (5.9)

The second term becomes zero when β → ∞, as the only terms in
the sum that do not vanish, are outputs with exactly the same score
as the maximum output y∗. These terms evaluate to 1. Note that the
number of maxima is independent of β. Hence, the soft-max loss for
β→ ∞ results in:

`∞(w,x,y) = max
y′∈Y

〈
w∆,ψ∆(y

′|x,y)
〉

.

which recovers the surrogate loss of the structured SVM in (5.1). Al-
ternatively, the same result can be obtained using conjugate duality
applied to the partition function, see Subsection 2.2.2, Section 2.4 and
Subsection 2.7.3.

A comparison of CRFs and structured SVMs reveals two important
differences. First, the maximum-margin loss is only affected by the
output that has the largest inner product. All the other outputs are do
not influence the loss. Second, the loss ∆y(y′), which is not leveraged
on at training time in the CRFs, provides a degree of freedom to specify
how much loss a given output y′ should incur given the ground-truth
y.

5.2.2 Special Case: Binary Classification

To illustrate the new surrogate loss, we discuss the special case of
binary classification where y ∈ {−1,+1}. For binary classification,
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as already discussed in Subsection 2.6.1, the feature map φ(x, y) =
1
2 yφ(x), transforms the surrogate loss to

`β(w,x, y) = 〈w,φ(x, y)〉

− 1
β

log
(

exp
(

β〈w,φ(x, y)〉
)
+exp

(
β(〈w,φ(x, y′)〉+ ∆)

))
.

Where y′ denotes the wrong label y′ = −y. The standard SVM emerges
in the limit β→ ∞ and ∆ = 1. The parameter choice β = 1 and ∆ = 0
yields the Logistic Regression classifier. Different instantiations of this
soft-max loss are visualized in Figure 5.1, including the log-loss and
the max-margin loss.

210−1−2

1

〈w,φ(x, y)〉

`

max-margin
log-loss
∆ = 1, β = 1
∆ = 0, β = 3
∆ = 1, β = 4

Figure 5.1: Soft-max surrogate loss `β(w,x, y) for different inverse tem-
peratures β compared to log-loss and max-margin loss.

For the special case of binary classification, the influence of the inverse
temperature on `β(w,x, y) was in parts discussed in (Zhang and Oles
2000). In our work we focus on classifiers for structured outputs. In this
setting the effective number of negative outputs can be exponentially
large, which makes the analysis more complex.
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5.2.3 Regularization by Entropy and Margin

The dual of ERM with our new surrogate loss can be found by using
the method of Lagrange, resulting in Lemma 5.2. The derivations are
similar as in (Collins et al. 2008).

Lemma 5.2. The dual minimization problem corresponding to (2.17) using
our soft-max loss `β(w,x,y), is given by

max
µ∈RN·|Y|

− 1
2λ
µTKµ+ eTµ− 1

βN

N

∑
n=1

∑
y∈Y

µn,y log µn,y (5.10)

s.t. µn,y ≥ 0 ∀y ∈ Y , n and ∑
y∈Y

µn,y = 1 ∀n

where µn,y denotes the dual variable for the output y in the n-th training
example and K is given by K(n,y),(m,y′) = 〈 1

Nψn,y, 1
Nψm,y′〉. The differ-

ence between two mapped outputs is denoted by ψn,y = −ψ(y|xn,yn) =

φ(xn,yn)−φ(xn,y). Furthermore, all the possible error terms are collected
in a vector e: en,y = 1

N ∆yn(y). A total of N· |Y| dual variables are required.
The primal and dual variables are related by

w =
1

λN

N

∑
n=1

∑
y∈Y

µn,yψn,y.

This connection between primal and dual variables holds for both, margin and
slack rescaling. In the case of slack rescaling, ψsl(y|xn,yn) should be used
instead of ψ(y|xn,yn).

Proof. The primal Lagrangian L(w) which is minimized w.r.t. w is
given by

L(w) =
1
N

N

∑
n=1

1
β

log ∑
y∈Y

exp (β〈w,ψ(y|xn,yn)〉+ β∆yn(y)) +
λ

2
‖w‖2

2.
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We define zn,y := 〈w,ψ(y|xn,yn)〉+ ∆yn(y) and scale the constraint
by 1/N, we thus get

L(w,µ, z) =
1
N

N

∑
n=1

1
β

log ∑
y∈Y

exp(βzn,y) +
λ

2
‖w‖2

2

− 1
N

N

∑
n=1

∑
y∈Y

µn,y[zn,y − 〈w,ψ(y|xn,yn)〉 − ∆yn(y)]

= − 1
N

N

∑
n=1

∑
y∈Y

zn,yµn,y +
1
N

N

∑
n=1

1
β

log ∑
y∈Y

exp(βzn,y) +
λ

2
‖w‖2

2

+
1
N

N

∑
n=1

∑
y∈Y

µn,y[〈w,ψ(y|xn,yn)〉+ ∆yn(y)].

Taking the derivatives w.r.t. the primal variable w we get

∂L(w,µ, z)
∂w

= λw+
1
N

N

∑
n=1

∑
y∈Y

µn,yψ(y|xn,yn),

and thus

w? = − 1
λN

N

∑
n=1

∑
y∈Y

µn,yψ(y|xn,yn)] =
1

λN

N

∑
n=1

∑
y∈Y

µn,yψn,y.

The dual function is therefore

inf
z,w
L(w,µ, z) = − 1

2λ
µTKµ+ eTµ

− 1
N

sup
z

[
µTz − 1

β

N

∑
n=1

log ∑
y∈Y

exp(βzn,y)

]

= − 1
2λ
µTKµ+ eTµ− 1

βN

N

∑
n=1

∑
y∈Y

µn,y log µn,y.

In addition, we get the constraints µn,y ≥ 0 and ∑y µn,y = 1. The last
step follows from the minimization w.r.t. z:

µn,y =
exp(βzn,y)

∑y′∈Y exp(βzy′)
.

This is solvable for µn,y ≥ 0, ∑y µn,y = 1:

z∗n,y =
1
β

log(µn,y).
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This derivation is given in more detail in (Boyd and Vandenberghe 2004,
Section 3.3.1). In its essence it reduces to identifying the entropy as the
conjugate dual of the log partition function. Putting this back into the
dual we get the final dual problem.

The dual in (5.10) consists of three terms. The first term is similar
to the kernel matrix in standard binary SVMs. The second term cor-
responds to a margin term which factors in the loss of the different
output choices. The third term corresponds to the entropy of the dis-
tributions specified by µn. Contrary to log-loss and max-margin loss,
both margin and entropy terms are present in the unified soft-max loss.
Unsurprisingly, the log-loss and max-margin loss can also be identified
as special cases in the dual: if e is the zero vector, we obtain the dual
of the standard CRF, if β → ∞ the dual of the structured SVM, see e.g.
(Collins et al. 2008) for the dual formulations of the structured SVM and
CRF.

5.2.4 The Effect of the Inverse Temperature β

So far, we argued that in order to reconstruct the log-loss from `β, the
parameters β = 1 as well as a zero error term ∆y(y′) need to be used.
However, the dual in (5.10) shows that it is actually sufficient to only
alter the inverse temperature β and the regularization parameter λ, but
not the error term itself. For a sufficiently small λ and β, the error term
contribution eTµ becomes negligible compared to the first and third
terms. As a result we identify the CRF dual.

As we have seen, β changes the peakedness of the conditional prob-
ability Pβ(y

′|y,x,w). For β → 0 all outputs y′ have a uniform dis-
tribution, i.e., Pβ(y

′|y,x,w) has an entropy of log(|Y|). For β ≈ 1
the distribution behaves similar to a CRF. For large values of β the
probability mass concentrates on the outputs with the largest scores.
Probabilities on the outputs are in this case not well-defined; the dis-
tribution consists of individual, scaled Dirac impulses at the outputs
y∗ with maximum scores. These findings are in line with (Bartlett
and Tewari 2007), where SVMs are shown to be incapable of estimating
conditional probabilities in a multiclass setting.

Lemma 5.3. Let gmm(w) := 1
N ∑N

n=1 `mm(w,xn,yn) + λ
2 ‖w‖2 and let

gβ(w) := 1
N ∑N

n=1 `β(w,xn,yn) + λ
2 ‖w‖2 denote the ERM objective for the
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maximum margin and soft-max loss, respectively. The difference between the
two objectives can then be bounded as follows:

gmm(w) ≤ gβ(w) ≤ gmm(w) +
1
β

log |Y|.

In particular this also holds for w? = minw gβ(w). One therefore obtains
an additive approximation guarantee of the error when training with the
soft-max loss instead of the maximum margin loss.

Proof. In order to derive an upper bound we start by expressing the
soft-max loss through its dual. We use the formalism introduced
in Section 2.4.

`β(w,x,y) =
1
β

log ∑
y′∈Y

exp
(

β(〈w,ψ(xn,y)〉) + ∆y(y′))
)

.

=
1
β

log ∑
y′∈Y

exp(β〈θ̄,ϕ(y′)〉) = 1
β

max
µ∈M

[β〈θ̄,µ〉+ H(µ)]

≤ max
µ∈M
〈θ̄,µ〉+ 1

β
log |Y| = `mm(w,x,y) +

1
β

log |Y|.

Here θ̄ denotes the score of a configuration according to w and the
feature map. Substituting into gβ(w) we obtain

gβ(w) ≤ gmm(w) +
1
β

log |Y|.

The lower bound trivially follows from the fact that the entropy is
always positive.

5.2.5 Choosing β

At this point it is natural to ask: “What is the best choice for β?” Ideally,
β is optimized based on the training data. However, looking at the
dual in (5.10), a model order selection question arises. By naively
minimizing the surrogate loss w.r.t. β, this would always result in
choosing β→ ∞, which is not desired. We thus advocate determining
β via cross validation on hold out data. Instead of only performing cross
validation over the regularization weight λ, a grid search for β as well
as λ needs to be carried out.

As discussed above, one can think of the soft-max surrogate loss as an
approximation of the structured SVM with more favorable convergence
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for the overall optimization problem. Favorable convergence stems
from the fact that the soft-max is smooth and therefore continuously
differentiable. The soft-max surrogate loss can be understood as an
application of the entropy smoothing approach of Nesterov (2005) to the
maximum margin surrogate loss. In the context of learning structured
models, it is interesting that applying smoothing to the structured SVMs

identifies the CRF as a special case. In the context of inference, rather
than learning, a similar smoothing approach has been used in (Jojic,
Gould, and Koller 2010) to solve the LP relaxation efficiently.

In order to evaluate the partition function in the soft-max surrogate
loss, marginal inference is required to be tractable, which might however
be more difficult to solve than computing the MPE label, see Section 2.7.
In some of the experiments we have found the soft-max loss to lead to
better accuracy than the max-margin loss for a relatively small β. We
attribute this to the fact that both losses are only approximations to the
true loss. In challenging problems with a lot of overlap between the
classes it seems to be beneficial that several low-energy outputs influence
the learning objective, as opposed to only the output with the lowest
energy, as it is the case in the structured SVM.

5.2.6 Prediction

So far this chapter has only considered the parameter estimation prob-
lem. We introduced a unified loss, parametrized by β, which is equiv-
alent to the structured SVM and the CRF for limit cases of β. However,
in the previous chapters we have advocated MPE for prediction in the
structured SVM and minimum Bayes risk for the CRF. How should one
predict in case the soft-max surrogate loss is used for learning? We will
investigate this question in the experiments. As already discussed, we
would not expect that minimum Bayes risk prediction would work well
when w is estimated using a large β, as the estimated probabilities are
no longer sensible.

5.3 latent variables

We now turn our attention to structured classifiers for partially observed
data. As discussed in Section 2.5, two training objectives have been
suggested for this more challenging setting: The Hidden Conditional
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Random Field (HCRF) (Quattoni et al. 2007), and the latent structural
SVM (Felzenszwalb, McAllester, and Ramanan 2008; Yu and Joachims
2009). Here we show that our formulation also extends to this scenario.
Incorporating hidden variables into the output is an important exten-
sion of practical relevance: some outputs might be unobservable or
one might define a hidden cause that leads to better accuracy of the
predictions. Let us denote the observed output variables by y and
the hidden, unobserved output variables (latent variables) by z ∈ Z .
In HCRFs, the conditional probability of jointly observing y and z is
modeled by the Gibbs distribution:

Pβ(y, z|x,w) =
1

Zβ(x,w)
exp

(
β
〈
w,φ(x,y, z)

〉)
.

Here, we directly include the inverse temperature β; β = 1 recovers the
standard HCRF (Quattoni et al. 2007). In case of a zero-one loss, Bayesian
risk minimization would predict according to

y∗ = argmax
y∈Y

∑
z∈Z

Pβ(y, z|x,w).

Comparing this to the fully observed MPE prediction rule, we see that
hidden variables are marginalized out. The introduction of the error
terms into the Gibbs distribution by multiplying the two posterior
distributions yields

Pβ(y
′, z|y,x,w) =

1
Zβ(y,x,w)

exp
(

β
〈
w∆,φ∆(y

′, z|x,y)
〉)

.

with φ∆(y
′, z|x,y) = [φ(x,y′, z)T, ∆y(y′)]T. Here it is assumed that

∆y(y′) is only dependent on observed output variables and not on the
hidden variables. As in the CRF, training of the parameters is performed
by minimizing the regularized negative log-likelihood, scaled by 1/β.
However, for the partially observed case, the hidden variables z have
to be integrated out. This leads to the soft-max loss for latent variable
settings:

`β(w,x,y) = − 1
β

log ∑
z∈Z

exp
(

β
〈
w∆,φ∆(y, z|x,y)

〉)
+

1
β

log ∑
y′∈Y
z′∈Z

exp
(

β
〈
w∆,φ∆(y

′, z′|x,y)
〉)

.
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Taking the limit for β → ∞ and using the log-sum-exp “trick”, the
latent structured SVM surrogate loss emerges:

`∞(w,x,y) = −max
z∈Z

〈
w∆,φ∆(y, z|x,y)

〉
+ max
y′∈Y
z′∈Z

〈
w∆,φ∆(y

′, z′|x,y)
〉
.

Again, the latent structured SVM can be seen as a probabilistic model, in
which all the probability mass is concentrated on the y, z combination
with the largest score. The limit case of the inverse temperature also
changes the prediction for new test data to

y∗ = argmax
y∈Y ,z∈Z

〈w,φ(x,y, z)〉.

Instead of marginalizing the hidden variables out, we now maximize
them out. The introduction of latent variables in general turns the
empirical risk minimization in (2.17) into a non-convex optimization
problem.

5.4 implementation

So far we have focused on a theoretical comparison of the different
surrogate losses for structured output learning. In this section we will
discuss issues that are important for an actual implementation.

5.4.1 Minimization of the Objective

Our soft-max loss `β(w,x,y) is both convex (for the completely ob-
served case) and differentiable for any inverse temperature except
when β → ∞, thus standard conjugate-gradient or L-BFGS solvers are
applicable for the minimization of the surrogate loss. In our imple-
mentations we use L-BFGS. This choice is contrary to the minimization
of the standard max-margin objective, where special algorithms for
non-differentiable minimization problems are required. We refer to
(Lacoste-Julien et al. 2013) for an overview of the different max-margin
solvers. For learning with `β(w,x,y), we are also interested in its
derivative w.r.t. w. For fully observed data and margin rescaling, the
gradient takes a form similar to that of standard CRFs:

∂`β(w,x,y)
∂w

= −φ(x,y) + ∑
y′∈Y

Pβ(y
′|y,x,w)φ(x,y′). (5.11)
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In our implementation we use the gradient information for the efficient
minimization of the surrogate loss. The L-BFGS algorithm computes
an approximation to the Hessian of the objective. For small β, this
second-order information drastically improves the running time of the
training. For large β, the Hessian does not help as the objective becomes
essentially piecewise linear (assuming a small λ).

5.4.2 Efficient Inference in Training

One key step in the optimization of the objective function is the evalua-
tion of the log-partition function Zβ(y,x,w), which is generally com-
putationally intractable. There exist cases, like for example a φ(x,y)
that corresponds to a tree structured graphical model, where the com-
putation of Zβ(y,x,w) can be performed efficiently. Moreover, to
compute the gradient in (5.11) the marginals also need to be efficiently
computable, which is generally the case when the partition function
is tractable. The structured SVM on the other hand requires comput-
ing the maximum violating output y∗ = argmaxy′∈Y 〈w∆,φ∆(x,y′)〉.
The maximization task in general is computationally hard, too, but
there exist classes of problems where the maximization is tractable, but
not the computation of the partition function. An example of such a
case is when submodularity constraints are imposed on the potentials
of a general graphical model. For more details, see Section 2.7 and
Chapter 4.

5.5 related work

Since (Zhang and Oles 2000), there have been various attempts to unify
the max-margin and the log-loss. The connections between SVMs and
exponential families have been indicated in (Canu and Smola 2006),
and our work makes the link between the log-loss and max-margin
loss more explicit through the inverse temperature and also extends to
structured classifiers and latent variables. In (Chapelle and Zien 2005)
an algorithm for learning multiclass SVMs in the primal is discussed:
The max-margin loss is approximated by a soft-max, which can then
be optimized by a conjugate-gradient solver. (Zhang 2005) considers a
surrogate loss function similar to ours, applied to multiclass SVMs.

114



5.6 experiments

Independently, the softmax-margin loss was developed in (Gimpel
and Smith 2010). The proposed surrogate loss and ours are very similar
in spirit: both introduce the margin concept known from structured
SVMs also into CRFs. In the application of named-entity recognition
which they consider, the margin term shows to substantially improve
the accuracy of the classifier. However, the connection between CRFs and
structured SVMs is not established in their work. In another concurrent
work Hazan and Urtasun (2010) studied the same soft-max loss function
as in our work and also derived an algorithm for approximate learning.

5.6 experiments

In our experiments we will only consider settings with either a small
number of outputs |Y|, or where inference can be performed exactly,
such as scenarios where the feature map φ(x,y) corresponds to a chain
structured graphical model.

5.6.1 Multiclass Classification

As a first experiment we consider the well-studied multiclass setting in
which a data point is assigned to one of K classes. For a more detailed
discussion of the model, see Subsection 2.6.2.

synthetic We designed three synthetic datasets with the reasoning
in Subsection 5.2.5 in mind. Each of the datasets shows different
characteristics, which can be exploited by the surrogate loss. The first
dataset, Synth1, consists of three classes. Each class is sampled from a
Gaussian with a mean at 0, 1 and 2, respectively and variance 1. We
would expect a small β to perform best on this dataset, as the classes
overlap to a large extent and probabilistic classifiers have been shown
to perform well in such scenarios. The second dataset, Synth2, consists
of three classes. Each class is sampled from a Gaussian with a mean
at (0, 0), (1, 0.1) and (1,−0.1), respectively, and with covariance 0.25I .
Here, the prediction error is computed by accounting only 0.1 for a
confusion between class 2 and 3, and 1 otherwise. This information
is provided to the classifier using the loss term. We expect the best
results with a large β, as the information of the loss is crucial. The third
dataset, Synth3, consists of four Gaussian. Two of which have the mean
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at (0, 0) and (1, 0), the remaining two have almost indistinguishable
mean of (0.5, 0.4) and (0.5, 0.6). All classes have a covariance of I .
Again, for the almost indistinguishable classes we only account an error
of 0.1 when confusing them. Here we would expect an intermediate
value of β to lead to the best results, as both considerable class overlap
and skewed class importance are present. The training set consists of
2000 examples for each class, the test set of 10000 examples for each
class. For all classifiers λ = 10−5 is fixed, as there is enough data to
prevent overfitting. Similar results are obtained for different values of
λ. The results of this experiment are shown in Figure 5.2. We observe
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Figure 5.2: Test error for different classifiers obtained by learning us-
ing the soft-max with varying values of β on the synthetic
multiclass datasets.

that the inverse temperature can have a substantial influence on the
accuracy of the resulting classifier. No value of β is optimal for all three
datasets, which is in agreement with the discussion in Subsection 5.2.5.
The experiment also shows that the limit case of a SVM for β → ∞
is already achieved for a relatively small β. We also tried prediction
using the minimum Bayes risk predictor, leading to qualitatively similar
accuracies.

mnist For the MNIST dataset1 we use the zero-one loss term in
training and evaluation, as there is no structure on the class labels
themselves. Minimum Bayes risk prediction and MPE coincide in this
case, hence we only report one of the two numbers. We perform
5-fold cross-validation to determine the best combination of the hyper-
parameters from the ranges λ ∈ {0.0001, 0.001, 0.01, 0.1, 1, 5, 10, 50, 100}
and β ∈ {0.1, 1, 10, 100}. Once the best hyper-parameter is found using

1 We obtained the data from http://www.cs.nyu.edu/~roweis/data.html.
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cross-validation, the model is re-trained on the combined training and
validation data. If we perform full cross-validation over both hyper-
parameters we obtain a test error of 7.1%, the same result was also
obtained using the multi-class SVM implemented in liblinear. Figure 5.3
shows the results for different choices of β. We notice that low val-

β λ test error
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1 5 7.23
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100 50 7.12
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Figure 5.3: Left: Test error on the MNIST dataset for different values of
the inverse temperature β. λ corresponds to the optimal reg-
ularizer weight found using cross-validation. Right: Training
running time in seconds for different hyper-parameters on
the MNIST dataset. As we would expect, learning gets more
expensive for large β and small λ.

ues of β need little L2-regularization, as the entropy term is already
regularizing the model.

5.6.2 Sequence Prediction

In this experiment we consider the Optical Character Recognition (OCR)
dataset from (Taskar, Guestrin, and Koller 2003). Here, the task is to
predict the letters of a word from a given sequence of binary images. As
has been shown in (Taskar, Guestrin, and Koller 2003), by exploiting the
dependencies between neighboring letters, the accuracy of the classifier
can be improved when compared to a model that classifies each letter
independently. We use the same folds as in the original publication:
The dataset consists of 10 train/test set splits, with each approximately
600 train and 5500 test sequences. We used the Hamming distance as
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a loss term and perform inference in the linear chain model using the
backward-forward algorithm implemented in UGM. In our experiments
we obtained a test error of around 19% (Figure 5.4), slightly outperform-
ing the structured SVM results reported in (Taskar, Guestrin, and Koller
2003). Varying the parameter β leads to a small, but consistent improve-
ment over extreme values of β. We perform a second experiment on this
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Figure 5.4: OCR results for different values of β. On the left we show
the test error when MPE prediction is used, on the right if
MPM is used. The error bars show the standard deviation
over the 10 different folds.

dataset to evaluate the quality of the probabilities on outputs learned by
the model. To do so, we measure the error when predicting using the
Maximum Posteriori Marginal (MPM) instead of the MPE predictor. MPM

is the optimal predictor according to Bayesian decision theory for the
true posterior distribution over outputs. Using the MPM leads to good
accuracy for small values of β, but fails for larger β. This behaviour is
in agreement with our discussion in Subsection 5.2.4 that probabilities
on outputs are not well-defined for the structured SVM.

5.6.3 Multiple Instance Learning

As a last experiment we consider the problem of learning from multiple
instances, see Subsection 2.6.6. Multiple instance learning is a scenario
with latent variables in training, as the label of an individual instance
in a bag is not observed; only the label of the whole bag. The model
for β = 1 and no loss term recovers the Multiple Instance Logistic
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Regression from (Ray and Craven 2005), for β→ ∞ the model reduces
to the MI-SVM (Andrews, Tsochantaridis, and Hofmann 2002).

We construct a one-dimensional synthetic dataset which illustrates
the deficiencies of the MI-SVM. A positive bag consists of p positive
instances and 50− p negative (0 < p ≤ 50), a negative bag contains 50
negative instances. The individual instances are hard to classify: the
positive instances are Gaussian distributed with mean 0.6 whereas the
negative instances are Gaussian distributed with mean 0, the variance
for both classes is 1. Smaller values of β lead to better classification
performance, as this corresponds to an averaging over the different
instances in a bag, which is a good strategy for large data uncertainty,
see Figure 5.5.
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Figure 5.5: Results for the synthetic multiple instance learning dataset
for 800 bags, averaged over 8 random datasets. Depending
on the number p of positive instances, a small β improves
the accuracy substantially. The solid line corresponds to
a setting where only one instance per bag is positive, the
dashed line to 25 positive instances per bag.

5.7 direct loss minimization

So far the present chapter studied structured output learning from a
surrogate loss minimization point of view. In reality one would however
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like to directly minimize the loss of a structured predictor. As we will show
here, a modification of the soft-max loss proposed in this chapter also
applies to this more challenging setting. Let us denote the score of an
input/output variable pair by sw(x,y). We study two different scores,
corresponding to the score used in structured SVMs and Bayesian risk
minimization.

1. Linear score:
sl
w(x,y) := 〈w,φ(x,y)〉.

2. Negative expected risk:

sr
w(x,y) := log

(
∑
y′∈Y

exp
(
〈w,φ(x,y′)〉+ log(1− ∆y′(y))

))

= log

(
∑
y′∈Y

(1− ∆y′(y)) exp(〈w,φ(x,y′)〉)
)

∝ log

(
∑
y′∈Y

(1− ∆y′(y))P(y′|x,w)

)
.

Here P(y′|x,w) denotes the standard conditional Gibbs distribu-
tion of a CRF.

A prediction function is then obtained by returning the output with the
largest score for a given input:

fw(x) = argmax
y∈Y

sw(x,y).

Our goal here is to choose the parameters w directly so that the empiri-
cal loss ∑N

n=1 ∆yn( fw(xn)) is minimized. For now we ignore regulariza-
tion of w. The main problem with direct loss minimization arises from
the fact that the objective is difficult to optimize, as it is non-convex and
piece-wise constant. A recent non-convex surrogate loss, the ramp loss,
was initially proposed in the context of binary SVMs (Collobert et al.
2006) and later extended to structured classifiers (Do et al. 2008), also
see (McAllester and Keshet 2011). It is defined as2:

`α,ramp(w,x,y) = max
y′∈Y

[
αsw(x,y′) + ∆y(y′)

]
−max
y′∈Y

αsw(x,y′). (5.12)

2 Note that there exist different definitions of the ramp loss in the literature, we adopt
the one in (McAllester and Keshet 2011).
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Here α ∈ R+ is a strictly positive scalar and we already adopted the
score notation. The ramp loss, to the best of our knowledge, has
so far only been studied in the context where the score is given by
sw(x) = 〈w,φ(x,y)〉, but not for prediction functions that are based
on Bayesian risk minimization. If sw(x) is convex inw, which is the case
for both scores studied, also the two terms in the definition of the ramp
loss are convex, this follows from the fact that convexity is preserved
by the maximum operation. Hence the objective is a difference of
convex functions, which is in general a non-convex objective, to which
however Concave-Convex Procedure (CCCP) is immediately applicable.
CCCP (Yuille and Rangarajan 2003) is a general approach to solve non-
convex optimization problems that can be expressed as a difference of
convex functions, also see Subsection 3.4.1 for more details about the
CCCP algorithm.

An important property of the ramp loss is that it approaches the true
loss:

lim
α→∞

`α,ramp(w,x,y) = ∆y( fw(x)).

This limit follows from the fact that for a large α, the first and second
maximizing arguments in (5.12) are the same and their score therefore
cancels out. Only the true loss of the output chosen according to the
prediction function fw(x) remains.

The soft-max idea is also applicable to the ramp loss. By replacing the
two maximum functions by a log-sum-exp approximation, we obtain a
soft ramp loss:

`α,β(w,x,y) =
1
β

log ∑
y′∈Y

exp(β(αsw(x,y′) + ∆y(y′)))

− 1
β

log ∑
y′∈Y

exp(βαsw(x,y′)).

In the limit case α → ∞ and β → ∞ the soft ramp loss results in the
direct loss:

lim
α→∞,β→∞

`α,β(w,x,y) = ∆y( fw(x)).

An advantage of the soft ramp loss compared to the standard ramp
loss, stems from its differentiability, which could potentially lead to
improved numerical solvers. The benefits could be two-fold. First, as
the smoothness of the objective can be adapted by changing β, it should
be possible to obtain algorithms with better convergence guarantees.
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Second, the smoothing could potentially mitigate the problem of getting
stuck in poor local minima.

If the soft ramp loss is convexified by replacing the second partition
function by the inner product of the ground-truth configuration and
the score sw(x,y) = 〈w,φ(x,y)〉 is used, the approach reduces to the
soft-max for α = 1.

5.8 conclusions

We have introduced a novel family of surrogate losses for structured
output learning. The soft-max loss is parametrized by an inverse
temperature β which controls the entropy of the posterior distribution
on outputs. The dual of the surrogate loss shows a double regularization
by a margin and an entropy term. The max-margin loss and the log-loss
emerge as two special cases of this loss. Additionally, our work also
extends to models with hidden variables and direct loss minimization.
We conjecture that different applications require different values of
β and validate this claim experimentally on multiclass, linear-chain
models and multiple instance learning. Choosing a large β, which
corresponds to a large margin setting, while sometimes improving
the accuracy, shows to have the severe disadvantage of deteriorating
the probability distribution on outputs. The difference between the
surrogate losses for different values of β is particularly striking in the
multiple instance learning experiment.
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6
PA RT & C L A M P

This chapter considers the problem of learning the parameters of a CRF

and formulates a novel lower bound on the intractable partition function.
The evaluation of the bound typically requires only a few iterations of
a modified message passing algorithm, where the number of iterations
is fixed and dependent on the specified budget. Our approach consists
of two parts: First, a subset of the output variables is selected, a so
called Feedback Vertex Set (FVS), with the property that any cycle in the
graph contains at least one variable in the FVS. Second, a conditioned
partition function for one state of the variables in the FVS is repeatedly
computed for a few low-energy states, to successively tighten the lower
bound. Each individual computation requires two message passes. Let
D denote a set of these FVSs and Z the states of the variables in the
FVS. We show that the lower bound, which we denote by Z(x,w,D,Z),
an exact definition will be given later, is well-suited for structured
output learning with a minimum negative log-likelihood objective1 (see
Subsection 2.5.1):

min
w

1
N

N

∑
n=1

[−〈w,φ(xn,yn)〉+ log Z(xn,w,D,Zn)] . (6.1)

The contributions of this chapter are as follows: First, we propose a
generalization of composite likelihood for computing a lower approxi-
mation of the structured partition function and formulate a tightening
strategy. We show that composite likelihood is a specific instance of
this framework. Second, we introduce a forest decomposition and
formulate it as a minimal FVS problem. Third, a variational algorithm,
max-tighten is introduced. The algorithm finds the states of the FVS

which maximally increase the lower bound. We introduce batch and
online algorithms for learning with the lower bound. The performance
of the algorithms is demonstrated on a computer vision dataset.

1 For the sake of clarity we will omit regularization terms in this chapter; the experiments
are performed including a regularizer.
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6.1 lower bounding the structured output loss

This section introduces an extension of composite likelihood (see Sub-
section 2.8.1) which can be understood as a lower bound of the partition
function. The goal in this work is to approximate an intractable partition
function of the form

Z(x,w) = ∑
y∈Y

exp(〈w,φ(x,y)〉).

Extensions to partition functions as encountered in Chapter 5, with an
inverse temperature or a difference of feature maps are straightforward.
For the sake of notational convenience we restrict ourselves to the
standard form of the structured partition function. As in composite
likelihood, we assume a partition of V into two sets, A and B is given.
The partition function can be decomposed into two sums running overpartition function

the states of the variables in A and B. A trivial lower-bound is obtained
by summing over only a (small) subset YB ⊆ YB of the large state space
YB :

Z(x,w) = ∑
yB∈YB

∑
yA∈YA

exp(〈w,φ(x,y)〉)

≥ ∑
yB∈YB

∑
yA∈YA

exp(〈w,φ(x,y)〉)

=: Z(x,w,B,YB).

The set YB contains all possible states of the variables in B and is there-
fore exponentially large. Using a subset YB may result in a relatively
poor approximation for high-entropy distributions. However, as we will
show, for parameter learning this simple approach can be very effective.
The choice of the decomposition, (A,B) as well as the states in the
set YB are discussed in detail in Subsection 6.2.1 and Subsection 6.2.2
respectively. Actual learning algorithms are given in Subsection 6.2.3.
The remainder of this section discusses extensions of the lower bound
and its connection to previous work.

6.1.1 Several Decompositions

In order to decrease the effects of poor decompositions, several par-
titions D = {(A1,B1), . . . , (AM,BM)} and corresponding states Z =
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{YB1
, . . . ,YBM

} can be combined. The arithmetic and geometric mean as
well as the maximum of all the bounds are also valid lower bounds:

Za(x,w,D,Z) :=
1
M

M

∑
m=1

Z(x,w,Bm,YBm
),

Zg(x,w,D,Z) :=

(
M

∏
m=1

Z(x,w,Bm,YBm
)

)1/M

, (6.2)

Zm(x,w,D,Z) := max
m

Z(x,w,Bm,YBm
).

The maximum over the different decompositions results in the tightest
bound, but has the disadvantage of being non-differentiable w.r.t. the
parameters due to the maximum function. This discontinuity can cause
problems when minimizing the (regularized) negative log-likelihood
in (6.1) using a quasi-Newton solver, such as L-BFGS that rely on the
smoothness of the objective. One approach to deal with the non-
differentiability would be to use a soft-max instead of the maximum.
The geometric mean is commonly used by composite likelihood ap-
proaches, and is obtained by considering the arithmetic average of the
log partition function. The geometric mean has the advantage that it
is smooth. However, the arithmetic mean actually provides a tighter
lower bound while maintaining differentiability.

Lemma 6.1. The relation between the different lower bound combinations is

Z(x,w) ≥ Zm(x,w,D,Z) ≥ Za(x,w,D,Z) ≥ Zg(x,w,D,Z).

While in terms of the value of the approximation, the maximum
combination is preferable, this in not necessarily the case for learning
with a lower bound: The quality of an approximation depends on the
difference between the exact maximum likelihood solution and the
minimizer obtained when using the lower bound as an approximation
for the exact partition function as in (6.1).

6.1.2 Connection to Composite Likelihood

The following lemma draws the connection between the lower bound
in (6.2) and composite likelihood.
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Lemma 6.2. Composite likelihood learning with decompositions D is equiv-
alent to lower bounding the partition function in the negative log-likelihood
for each example (xn,yn) by the geometric average bound Zg(xn,w,D,Zn)

with Zn = {Yn
B1

, . . . ,Yn
BM
} where Yn

Bm
= {yn

Bm
}.

Proof. We choose to scale the composite likelihood objective by the
number of decompositions M. Assuming the same number of decom-
positions is used for each example, this does not change the value of
the minimizer. The composite likelihood contribution of an example
(x,y) is

1
M

M

∑
m=1
− log P(yAm |yBm ,x,w)

=
1
M

M

∑
m=1

[−〈w,φ(x,y)〉+ log Z(yBm ,x,w)]

= −〈w,φ(x,y)〉+ 1
M

M

∑
m=1

log Z(yBm ,x,w).

Which recovers the geometric average lower bound.

The lower bound in our work differs in two key aspects from the clas-
sic composite likelihood: First, we give a concrete choice of the decom-
positions by feedback-vertex sets, balancing computational tractability
and accuracy of the estimator. Second, in addition to the ground-truth,
several other low energy states of the variables in B are used. As we will
show in the experiments, especially the second contribution improves
the results drastically.

6.1.3 Asymptotic Consistency

The bound in (6.2), when used in a maximum likelihood objective, can
be understood as an efficient extension of the non-local contrastive
objective introduced in (Vickrey, Lin, and Koller 2010). In their work
a learning objective is formulated where the partition function is re-
placed by an exhaustive enumeration over low energy states which are
computed using MPE inference. Contrary to our work, the non-local
contrastive objective does however not consider the decomposition of
the partition function into two parts. Therefore many additional states
need to be considered explicitly. Nevertheless, the proof of asymptotic
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consistency in (Vickrey, Lin, and Koller 2010) also generalizes to our
lower bound (when the geometric combination is used) subject to the
same regularity assumptions.

6.1.4 Comparison to Upper Bounds

In contrast to our lower bound a considerable amount of work has
investigated upper bounding the partition function. Upper bounds are
generally obtained using variational inference. Such an example is the
tree reweighted belief propagation (Wainwright, Jaakkola, and Willsky
2005a). A problem of learning with upper bounds such as (Hazan and
Urtasun 2010; Wainwright, Jaakkola, and Willsky 2005a; Meshi et al.
2010) arises from the fact that convergence of the message passing
algorithms used to compute the upper bound is generally slow, or
sometimes not even guaranteed.

The general perception in the field is that upper bounds are superior
to lower bounds, as intuitively speaking “less things can go wrong”
when minimizing an upper bound. This view is also supported by (Fin-
ley and Joachims 2008), see the brief discussion in Subsection 2.8.3. Our
work questions this belief by showing that composite likelihood, an
often employed approach, is in fact a lower bound. Furthermore, we
give experimental support that our lower bound leads to state-of-the-art
accuracy on a well-studied data set.

6.1.5 Connection to Cutset Conditioning

Our work is related to the relatively old idea of cutset conditioning in
Bayesian networks, dating back to Pearl (1990), see also (Koller and
Friedman 2009, Section 9.5). For the task of probabilistic inference, a
subset of the nodes is exhaustively enumerated over, whereas for the
remaining variables a sum-product algorithm is used. We use a very
similar idea in the next section. Cutset conditioning is generalized
in (Horvitz, Suermondt, and Cooper 1989) for approximate inference.
However, to the best of our knowledge, cutset conditioning has not
been used for learning undirected models, nor have its connection to
composite likelihood been explored.
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6.2 part & clamp

This section describes the details of the main building blocks of our
proposed part & clamp algorithm.

6.2.1 Part: Finding a Minimum FVS

The lower bound in (6.2) is valid for any choice of partition A,B. For
tractable computations, we consider B such that all loops in the graph
G are blocked by at least one variable in B. Such a subset of the output
variables is called a feedback vertex set (Vazirani 2001). To make this
property explicit, we will use F to denote such a set B and V\F to
denote its complement. Due to the FVS property (see Figure 6.1), V\F
is a forest and hence conditioned on the state of the FVS, yF , summation
over YV\F for the remaining variables can be carried out exactly using
the sum-product algorithm (see Subsection 2.7.2).

(a) example FVSs for 3× 3 grid (b) DF (0.38) (c) BF (0.33)

Figure 6.1: Different feedback vertex sets (in black) of a grid-graph.
(b) & (c) show small FVSs obtained using the algorithms
described below. BF and DF denote the breadth-first and
depth-first approach. We indicate the fraction of variables in
the FVS in brackets (the smaller the better). A checkerboard
decomposition would have a fraction of around 0.5.

The decision variant of the minimal FVS is an NP-hard problem (Vazi-
rani 2001) and therefore one has to resort to approximation algorithms.
In our work we consider the unweighted version, where the number
of variables |F | in the FVS is minimized. This can be motivated by
the principle of insufficient reason: all the variables are assumed to
have the same contribution to the partition function. Therefore, the
minimum FVS results in the lowest approximation error. More complex
selection criteria based on marginal variable weights would be possible.
However, in our work we keep the decomposition fixed during learning and
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thus an initial estimate of the parameters would need to be obtained in
order to make the selection based on marginals meaningful.

Algorithm 6.1 Growing forests algorithm for the FVS problem.
Require: G = (V , E).

1: F = ∅,Q = ∅, ∀i ∈ V : visited(i) = 0.
2: while not all vertices visited do
3: Choose i at random from {j ∈ V : visited(j) = 0}.
4: i→ Q.
5: repeat
6: i← Q.
7: if |{j ∈ N (i) : visited(j) ∧ j 6∈ F}| ≥ 2 then
8: F = F + {i}.
9: end if

10: visited(i) = 1.
11: ∀j ∈ N (i) ∧ ¬visited(j) : j→ Q (random order).
12: until Q = ∅.
13: end while
14: return F

A series of papers (Becker and Geiger 1996; Chudak et al. 1998;
Bafna, Berman, and Fujito 1999) gives 2-approximation algorithms
for the minimum FVS problem. In our work we consider a simpler
probabilistic algorithm (Chandrasekaran et al. 2011) based on a breadth-
first exploration of the graph. The algorithm is shown in Algorithm 6.1;
N (i) denotes the neighborhood of a vertex i. An algorithm with a
depth-first exploration is obtained by using a stack instead of the queue
Q. Generally the results with depth-first exploration were inferior to
the ones obtained using breadth-first. For a grid graph the breadth-first
approach leads to a close to optimal FVS ratio of around 1/3, which is
in the order of the lower bound in (Luccio 1998).

6.2.2 Clamp: Choosing the States of the FVS

The set YF is initialized with the ground-truth label yn
F , corresponding

to the input yn as the only state. The learning algorithm which we will
describe later in more detail, estimates w for a given bound and pro-
ceeds by adding one additional state to YF . This alternating procedure
is repeated till convergence. The tightening procedure described below
will therefore be run for different weight vectors and hence the maximiz-
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ing argument will most likely differ between iterations. For a given
parameter w and feedback vertex set F let us consider the problem of
finding a labeling y?F to be included in YF . We here follow a greedy
approach by including y?F to maximally tighten the lower bound in (6.2).
We choose the states of the FVS according to:

y?F = argmax
yF∈YF

∑
yV\F∈YV\F

exp(〈w,φ(x,y)〉). (6.3)

The maximization above is more complex than standard energy mini-
mization problems arising from MPE inference. The task is sometimes
described as marginal MPE (see Section 2.7). Here, some variables yV\F
are summed over and other variables yF are maximized over. We derive
a variational approach for this problem, which we named max-tighten.
To simplify the notation, we drop the dependence of the energy on w
and x. Furthermore, let Z(yF ) denote the partition function for the FVS

variables clamped to state yF .
We follow the recent approach in (Liu and Ihler 2011; Jiang, Rai, and

Daumé III 2011) which formulates the marginal MPE as a variational
problem over the marginal polytope (see Subsection 2.7.3). Let us first
rewrite the log partition function for a given yF through its dual:

A(yF ) := log ∑
yV\F

exp(−E(y))

= min
P

∑
yV\F

P(yV\F |yF )E(y)

+ ∑
yV\F

P(yV\F |yF ) log P(yV\F |yF )

The full problem in (6.3) can then be rewritten as

max
yF

A(yF ) = min
P

∑
y

P(y)E(y) + ∑
y

P(y) log P(yV\F |yF )︸ ︷︷ ︸
=:−H(yV\F |yF )

. (6.4)

The first term in (6.4) is a standard average energy and the second term
corresponds to the negative conditional entropy of yV\F . Unfortunately,
the variational problem above still remains intractable as the optimiza-
tion problem has an exponential number of variables (or equivalently
an exponential number of constraints if expressed using the marginal
polytope). Furthermore, the conditional entropy does not factorize into
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marginals, which makes an approximation even more difficult. Both
(Liu and Ihler 2011) and (Jiang, Rai, and Daumé III 2011) choose to
approximate (6.4) by relaxing the constraint set to the local marginal
polytope and replacing the entropy term with a unary and pairwise
approximation. We here choose the approach from (Jiang, Rai, and
Daumé III 2011) which reduces to a hybrid message-passing algorithm
in which for variables in the FVS a max-product update is performed,
whereas for the remaining nodes a sum-product update is used.

For obtaining a y?F , the obtained pseudo-beliefs need to be rounded
to integer values. We choose to round each node independently to the
state with the largest pseudo-belief.

Our approach ignores the constraint that y?F should be different from
all the states already in YF and thus in theory might generate a state
that is already modeled. This could potentially be improved with an
approach akin to the M-best MAP algorithm (Fromer and Globerson
2009), at the cost of an increased runtime. We observed empirically that
states were rarely chosen repeatedly.

Alternatively, instead of using the max-tighten approach, one can
simply compute a MPE labeling and use it to tighten the bound. While
this approach does not guarantee the most effective tightening, it has
the advantage that very efficient specialized solvers are available. In
practice we have found that initializing the message-passing algorithm
for max-tighten with a smoothed version of a MPE label consistently
lead to the best results2.

6.2.3 Derived Learning Algorithms

Here we describe parameter learning with the proposed lower bound.
The approximate learning objective is obtained by replacing the parti-
tion function in the negative log-likelihood by Z(x,w,D,Z), leading
to the objective given in (6.1):

min
w

1
N

N

∑
n=1

[−〈w,φ(xn,yn)〉+ log Z(xn,w,D,Z)] .

To make learning practical, the gradient of the approximate objective
needs to be computed efficiently. The derivative of the approximate log

2 A smoothed version is obtained by setting the pseudo-beliefs of a variable to 1− α for
the MPE state and to α/(K− 1) for the K− 1 other states.
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partition function w.r.t. w is the expected feature map. The expectation
now only runs over the states in the individual YF for each decomposi-
tion. The expectation computation requires the marginals Pα(yα|YF ) of
the factors for each decomposition. If only one decomposition is used,
the gradient is given by

∂

∂w
=

1
N

[
N

∑
n=1
−φ(xn,yn) + ∑

t∈T
∑

α∈C(t)
∑
yα∈Yα

Pα(yα|Yn
F )φt(x

n,yα, α)

]
.

All the required quantities can be computed by aggregating the results
from simple sum-product runs for the different clamping configurations
yF ∈ YF . We illustrate this fact for two configurations y1

F ,y2
F ; the case

of larger YF is straightforward. Given the marginals Pα(yα|y1
F ) and

Pα(yα|y2
F ) for the two clamping states and the corresponding partition

functions Z1, Z2, the combined quantities are obtained as follows:

Z1,2 = Z1 + Z2,

Pα(yα|YF ) =
Z1

α(yα)

Z1,2 +
Z2

α(yα)

Z1,2 , (6.5)

Zk
α(yα) = ZkPα(yα|yk

F ) for k ∈ {1, 2}.

As described in Subsection 6.1.1, several decompositions can be handled
using different combination approaches. The marginal computations
for the maximum and geometric average combinations are simple
(marginals of the decomposition with the maximum value and an
average of the different marginals, respectively). The arithmetic average
combination turns out to be a partition function computation of a
special form, which is however also tractable.

batch learning Batch learning for the proposed lower bound
computes M decompositions of the graphical model for each example.
The set Yn

F for each of the examples xn is initialized with the ground-
truth label yn

F . The resulting bound is then minimized using L-BFGS
leading to a first parameter estimate. For this parameter, a tightening
operation using max-tighten is performed for each decomposition and
example. The tightening of the lower bound is followed by a minimiza-
tion w.r.t. the parameters. These steps are repeated until convergence.
The batch algorithm has close relationships to the cutting planes al-
gorithm employed in the training of structured SVMs (Tsochantaridis
et al. 2005). Also, if a pseudo-likelihood decomposition is used together
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with the soft-max loss (see Chapter 5), for the limit case of an infinite
inverse temperature, the pseudo-max approach introduced in (Sontag
et al. 2010) is recovered.

online learning In order to solve large-scale problems, we pro-
pose an online learning version of the algorithm using Stochastic Gradi-
ent Descent (SGD)(Robbins and Monro 1951; Kiefer and Wolfowitz 1952).
SGD evaluates the loss for a subset of examples and takes a step in the
direction of the gradient. In our implementation, a budget is specified
for each example, this budget corresponds to the number of states in
Yn
F . At each iteration the lower bound is tightened using max-tighten

and in case the budget is exceeded, the highest energy state is pruned
from Yn

F (the ground-truth state is however never removed). Followed
by an evaluation of the lower bound and its derivative.

6.3 experiments

We evaluate the performance of the proposed approach on the appli-
cation of binary image denoising. We use the dataset in (Kumar and
Hebert 2006) and follow their experimental settings. The dataset con-
sists of two noise scenarios: a unimodal and bimodal noise model. 10
images are used for training and 150 images for testing. The graphical
model is given by the standard four connected grid of size 64× 64. In
all of the experiments we use λ = 1, we observed little change when
varying the regularization parameter. Figure 6.2 shows the develop-
ment of the lower bound for batch learning. As expected, the lower
bound increases as more labels are added to YF . Furthermore, the
more states considered for the FVS, the better the test error. Comparing
the curves for the unimodal and bimodal noise datasets, we notice that
the lower bound flattens off after fewer iterations of the algorithm in
the easier unimodal dataset. For MPE prediction we used Sequential
Tree-Reweighted Message Passing (TRWS) (Kolmogorov 2006) and for
MPM we used Gibbs sampling (with 1000 sweeps).

Table 6.1 shows the image denoising results obtained using differ-
ent learning and prediction algorithms. As expected, MPM prediction
outperforms MPE prediction. We also include a prediction version
(‘clamped MPM’) where the minimal FVS algorithm is used to find a FVS,
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Figure 6.2: Batch learning for the binary image denoising dataset. The
lower bound on the empirical risk and the prediction error
are visualized when increasing YF . We observe that the
first couple of iterations are the most important. The dotted
curve in (a) corresponds to tightening using MPE inference,
the solid curve to max-tighten: The differences are more
pronounced for the bimodal data set. The curves in (b)
correspond to different prediction approaches using the
same parameter estimate. The error bars show the standard
deviation of the prediction errors. Note that clamped MPM is
unrealistic (since it requires labels), and is shown to indicate
the theoretical optimum.

the state of which is clamped to its true value3. Only for the variables
in V\F a label is predicted. We report the test error of the clamped
MPM to give a rough estimate of the prediction error underlying the
surrogate loss used in composite likelihood training. As can be seen, the
Part&Clamp approach, in both its online and batch version, performs
well and does not exhibit the poor behavior of contrastive divergence on
the more difficult bimodal dataset. The online version of Part&Clamp
performs better than the batch version, as it seems to overfit less to
the training data (the training error is however worse). The results
improve slightly on (Kumar and Hebert 2006) where a regularization
heuristic for pseudo-likelihood was used. (Hazan and Urtasun 2010)
studies a different setting, which should have a diminishing test error

3 ‘Clamped MPM’ considers an unrealistic scenario, as it assumes the value of the FVS

variables are known even for the test examples.
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XXXXXXXXPrediction
Train Pseudo- Composite Contrastive Part & Clamp

likelihood likelihood divergence batch online
bi

m
od

al MPE 15.58± 4.11 12.02± 3.50 7.01± 1.71 6.14± 1.27 5.16± 0.77
MPM 11.86± 3.40 9.33± 2.69 6.72± 1.67 5.32± 1.12 5.20± 0.80
clamped MPM 1.77± 0.25 1.80± 0.26 1.96± 0.22 1.90± 0.22 2.23± 0.25

un
im

od
al MPE 5.28± 1.47 4.43± 1.26 2.39± 0.47 2.40± 0.50 2.40± 0.46

MPM 4.13± 1.18 3.66± 0.96 2.37± 0.45 2.40± 0.42 2.42± 0.43
clamped MPM 0.98± 0.22 1.01± 0.21 1.05± 0.21 1.03± 0.22 1.17± 0.23

Table 6.1: Test error for learning on the binary image denoising dataset.
A single FVS decomposition per example is used, i.e. M =

1. Composite likelihood refers to the first iteration of the
Part&Clamp algorithm (i.e. only the ground-truth state is
used in YF ). For the SGD updates in contrastive divergence
and the online variant of Part&Clamp, all the images were
considered for a single update step, making it a gradient
descent step. This was done to simplify the comparison to
the batch learning algorithms. For contrastive divergence
five Gibbs iterations were used, for the online version of
Part&Clamp a budget of two labels, i.e. |YF | = 2.

as the output label is always the same in training and testing and the
parametrization is powerful enough to simply remember this particular
output label.

Figure 6.3 reports results when several decompositions are consid-
ered. In each setting the batch algorithm is run for one to five different
FVSs with a clamping set of size five, i.e. |Yn

F | = 5. MPM inference is
used for prediction. It can be observed that increasing the number
of FVSs has little influence on the results. The combination approach
(arithmetic or geometric mean) behaved as predicted by Lemma 6.1; the
arithmetic mean leads to slightly more robust results. This behavior is
however only visible if random states are used for clamping.

6.4 summary

We propose a lower approximation of the partition function which
improves with increasing computational resources. Our method con-
sists of finding good partitions of the graphical model (Part) and for
those partitions find good states of the conditioning set (Clamp). We
solve the first problem by finding a minimal FVS to obtain the largest
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Figure 6.3: Training error for different number of decompositions for
a clamping set of size five. We visualize the results when
either using the max-tighten algorithm for tightening (red)
or a random state for clamping (blue). The results with the
geometric mean (solid line) are slightly less robust w.r.t. the
decompositions than the arithmetic mean (dashed line) for
the random clamping.

possible tractable subgraph. Then we propose a variational approach
max-tighten to optimize the states of the conditioning set. We demon-
strate that the resulting learning algorithm has good performance in a
computer vision task. Furthermore, the online version should enable
large-scale learning of conditional random fields.
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7
D I S C U S S I O N

The methods introduced in this thesis can be extended in various
ways and are applicable to several new domains. Future work could
potentially consider the following directions:

• As outlined in Chapter 5, the soft-max loss is not restricted to
surrogate loss minimization, but is also applicable in a direct loss
minimization scenario. We have not studied such an approach yet.
We would expect the soft-max, due to its implicit regularization
by the entropy, to lead to a smoother optimization landscape
than approaches that rely on a maximum operation. Direct loss
minimization holds considerable promise for further accuracy
improvements of structured classifiers (Do et al. 2008).

• We argue that many vision problems, especially in medical imag-
ing, are in fact counting tasks. The segmentation is often only an
intermediate step, the final task is however to count the number
of pixels that are for example infected. We have not fully explored
these applications in our work and would expect the label-count
loss, introduced in Chapter 4, to have a large impact in such
scenarios. For medical applications it would also make sense
to consider loss terms that are relating the number of infected
pixels to a global staining label, which roughly corresponds to
the amount of stained pixels and takes values in a predefined
range. Further, the label-count loss is also applicable to computer
vision applications, where one is given bounding-boxes in train-
ing, but would like to predict a pixel-accurate segmentation at
test time. In such a scenario, a label-count approach could learn
a structured classifier such that for example 75% of the pixels
inside every bounding-box in an image are labeled as foreground.
This would remain computationally tractable even with many
bounding boxes in a single image.

• For the Part&Clamp work we focused on forest-like decomposi-
tions because the resulting sub-problems are exactly solved by the
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sum-product algorithm. The approach is however not restricted to
such tree graphs, and could potentially be extended to planar sub-
graphs (Schraudolph and Kamenetsky 2009), as this sub-problem
is also exactly solvable in some situations.

• One interesting aspect of our work on the combined LPQP re-
laxation is the fact that the message-passing algorithm from a
practical point becomes more efficient if the weight of the con-
sistency constraint is increased. Future work should investigate
this rather counter-intuitive trade-off of speed and accuracy in
more detail. Our work also shows that in settings where the LP re-
laxation is not tight, solving an entropy-augmented LP relaxation
to optimality for very small entropy weights, is not advisable.
As we showed in Chapter 3, better results are obtained in such a
setting by increasing in a second stage the influence of the entropy,
combined with an appropriate modification of the unary terms.
It would be desirable to derive a criteria based on which one can
obtain the precision up to which the initial entropy-augmented
LP relaxation should be solved.

• We suspect that one could include a similar constraint as in the
LPQP objective when learning structured SVMs. Initially a variant
of the structured SVM would be learned for a LP relaxation, which
is successively tightened in subsequent iterations.

Approximate inference and learning has seen a wide-spread research
interest and adoption in the past couple of years, as witnessed by
several workshops at NIPS or ICML, but also more applied conferences
such as CVPR or ICCV. Many novel algorithms are introduced every
year, each work demonstrating the performance of their approach on a
few example applications. Unfortunately, it is very difficult to compare
the different approaches in an unbiased manner. This is only partially
the fault of the researchers, as applying a structured algorithm to
an application in practice is time-consuming due to domain-specific
feature extraction or unclear modeling assumptions and hence with a
restricted time-budget only few experiments can be performed. It is my
strong personal belief that in order to advance the field as a whole, in a
community effort a benchmark for structured output prediction and learning
needs to be established. Such a benchmark should define a structured
learning and prediction application programming interface together
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with a standard file format. A website would allow researchers to obtain
a large amount of structured problems, for which the algorithms can
then be run. Different categories could be established, such as pairwise
or higher-order graphical models, models with many states per variable,
tractable and intractable models, or different parameterizations for
learning. Such a benchmark would facilitate a better comparison of the
different approaches found in the literature and allow the field to better
understand the trade-offs between speed and accuracy. Furthermore, it
would facilitate a closer interaction with applied researchers, who could
upload novel problems to the website. Efforts such as the Probabilistic
Inference Challenge (PIC) are steps in this direction, but should be
extended along the direction of mldata.org.
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for Approximate MAP Inference with Latent Variables.“ In: Ad-
vances in Neural Information Processing Systems 24 (NIPS), pp. 1197–
1205 (cit. on pp. 130, 131).

Jojic, Vladimir, Stephen Gould, and Daphne Koller (2010). ”Accelerated
dual decomposition for MAP inference.“ In: Proceedings of the 27th
International Conference on Machine Learning (ICML), pp. 503–510
(cit. on pp. 74, 111).

Kappes, Jörg H. and Christoph Schnörr (2008). ”MAP-Inference for
Highly-Connected Graphs with DC-Programming.“ In: Pattern
Recognition, 30th DAGM Symposium (cit. on pp. 61, 65).

Kiefer, Jack and Jacob Wolfowitz (1952). ”Stochastic estimation of the
maximum of a regression function.“ In: The Annals of Mathematical
Statistics 23, pp. 462–466 (cit. on pp. 29, 55, 133).

Kirkpatrick, Scott, C. Daniel Gelatt, and Mario P. Vecchi (1983). ”Op-
timization by simulated annealing.“ In: Science 220, pp. 671–680
(cit. on pp. 53, 76).

146



Bibliography

Kohli, Pushmeet and M. Pawan Kumar (2010). ”Energy Minimization
for linear Envelope MRFs.“ In: The Twenty-Third IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 1863–1870
(cit. on pp. 18, 50, 84, 89, 90).

Kohli, Pushmeet, M. Pawan Kumar, and Philip H. S. Torr (2009). ”P3

and Beyond: Solving Energies with Higher Order Cliques.“ In:
vol. 31. 9, pp. 1645–1656 (cit. on pp. 18, 89).

Kohli, Pushmeet, Lubor Ladicky, and Philip H. S. Torr (2009). ”Ro-
bust Higher Order Potentials for Enforcing Label Consistency.“
In: International Journal of Computer Vision 82.3, pp. 302–324 (cit. on
p. 91).

Kolev, Kalin and Daniel Cremers (2008). ”Integration of Multiview
Stereo and Silhouettes Via Convex Functionals on Convex Do-
mains.“ In: 10th European Conference on Computer Vision (ECCV),
pp. 752–765 (cit. on p. 89).

Koller, Daphne and Nir Friedman (2009). Probabilistic Graphical Models:
Principles and Techniques. MIT Press (cit. on pp. 7, 20, 43, 127).

Kolmogorov, Vladimir (2006). ”Convergent tree-reweighted message
passing for energy minimization.“ In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 28.10, pp. 1568–1583 (cit. on pp. 74,
76, 133).

Kolmogorov, Vladimir and Ramin Zabih (2004). ”What Energy Func-
tions Can Be Minimized via Graph Cuts?“ In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 26.2, pp. 147–159 (cit. on
pp. 51, 91).

Komodakis, Nikos, Nikos Paragios, and Georgios Tziritas (2007). ”MRF
optimization via dual decomposition: Message-passing revisited.“
In: IEEE 11th International Conference on Computer Vision (ICCV) (cit.
on p. 71).
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probability

symbol meaning

P(· ) probability mass function
Z partition sum; normalization constant of a distribution
A logarithm of the partition sum
A∗ conjugate dual of the log partition sum
EP[X] expected value of X, w.r.t. distribution P
CovP[X] covariance of X, w.r.t. distribution P
DKL(q‖p) Kullback-Leibler divergence of distributions q and p
I(p, q) mutual information of p and q
H(P) entropy of the distribution P
β inverse temperature in a Gibbs distribution
Iexpr(x) indicator function returning 1 if the Boolean expression

expr involving variable x is true and 0 otherwise.
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structured output

symbol meaning

Yi domain of the i-th output variable
yi individual output variable, yi ∈ Yi
Y product space of all the individual output domains
y all the output variables of an example
X domain of the input variables
x all the input variables of an example
Zi domain of the i-th hidden output variable
zi individual hidden output variable, zi ∈ Zi
Z product space of all individual hidden output domains
z all the hidden output variables of an example
φ(x,y) feature map of an example (x,y)
ψ(y′|x,y) feature map difference: φ(x,y′)−φ(x,y)
∆y∗(y) loss when predicting y instead of y∗

w (linear) parameters of a structured model
`(w,x,y) surrogate loss of parameter w for example (x,y)

factor graphs and graphical models

symbol meaning

E(y) energy of output configuration y
θc(yc) potential of factor c and assignment yc

θ̄c(yc) negative potential (score) of factor c and assignment yc

G graph
V vertices of a graph
E edges of a graph
N (i) neighboring vertices of vertex i
di degree of the i-th vertex
FG factor graph
µ marginal variables
M marginal polytope
LG local marginal polytope for graph G
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MAP Maximum-A-Posteriori

MPE Most Probable Explanation

MMSE Minimum Mean Squared Error

MPM Maximum Posteriori Marginal

ERM Empirical Risk Minimization

MRF Markov Random Field

CRF Conditional Random Field

HCRF Hidden Conditional Random Field

SVM Support Vector Machine

mi-SVM microscopic Multiple-Instance SVM

MI-SVM macroscopic Multiple-Instance SVM

LP Linear Program

QP Quadratic Program

L-BFGS limited-memory Broyden-Fletcher-Goldfarb-Shanno

OWL-QN Orthant-Wise Limited-memory Quasi-Newton

SGD Stochastic Gradient Descent

FISTA Fast Iterative Shrinkage-Thresholding

ADMM Alternating Direction Method of Multipliers

CCCP Concave-Convex Procedure

DC Difference of convex functions

SA Simulated Annealing
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MCMC Markov Chain Monte Carlo

CD Contrastive Divergence

KL Kullback-Leibler

BP Belief Propagation

MPLP Max-Product Linear Programming

TRWS Sequential Tree-Reweighted Message Passing

LPQP Linear and Quadratic Program relaxation

LPQP-U LPQP with Uniform Penalty

LPQP-T LPQP with Tree-weighted Penalty

IBFS Incremental Breadth First Search

FVS Feedback Vertex Set

HOG Histogram of Oriented Gradients

SIFT Scale-invariant feature transform

OCR Optical Character Recognition

VOC Visual Object Classes
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attractive potential, 16

Bayesian decision theory, 10
belief propagation, 45, 70

loopy, 47
Bethe free energy, 64
binary classification, 33, 105

composite likelihood, 53, 125
concave-convex procedure, 65
conditional random field, 3, 21,

27
conjugate duality, 24, 47
consistency, 55, 127
contrastive divergence, 55, 134
CRF, see conditional random field
cutset conditioning, 127
cutting-plane algorithm, 31

discriminative model, 18
dual decomposition, 71

empirical risk minimization, 25
energy, 12

internal, 14
minimization, 42, 57

entropy, 14, 24, 44
exponential family, 23

factor, 12
factor graph, 11
factor template, 19
feature map, 20, 32
feedback vertex set, 128
foreground-background segmen-

tation, 1, 95

Gibbs
distribution, 12, 13
sampling, 52

graph-cut, 51

Hammersley-Clifford theorem,
17

HCRF, see hidden conditional ran-
dom field

hidden conditional random field,
29

hidden variables, 112
homogeneous coordinate system,

34

indicator function, 8
input variable, 7, 19
inverse temperature, 13, 100
Ising model, 15, 19

junction-tree theorem, 44

Kullback-Leibler divergence, 62

latent structured SVM, 32
Legendre-Fenchel transformation,

24
linear programming relaxation,

59
local marginal polytope, 48
log-likelihood, 27
log-linear model, 23
logistic regression, 34
loss, 83, 101

augmented inference, 31, 85

161



index

direct minimization, 120
function, 8
Hamming, 9, 86
high-order, 87
Hinge, 34
label-count, 87
squared, 9
surrogate, 25
zero-one, 8

lower envelope, 89

MAP, see maximum-a-posteriori
margin rescaling, 31, 102
marginal, 24, 42

MPE, 43, 130
polytope, 24, 48

Markov
blanket, 17
random field, 2, 17

max-product algorithm, 46
maximum flow, 52
maximum likelihood, 27
maximum margin loss, 32
maximum posteriori marginal,

10
maximum-a-posteriori, 10, 42
mean-field methods, 49
message-passing, 45
MI-SVM, 41
mi-SVM, 39
minimum s-t-cut, 50
minimum Bayes risk predictor,

10
minimum mean squared error,

11
MMSE, see minimum mean squared

error
most probable explanation, 42,

57

MPE, see most probable expla-
nation

MPM, see maximum posteriori
marginal

MRF, see Markov random field
multiclass classification, 34, 115
multilabel classification, 35
multiple instance learning, 39,

118
mutual information, 45, 62

output variable, 7, 19
overcomplete representation, 22

part-of-speech tagging, 1
partition function, 13, 23, 124
potential, 12
Potts model, 16
prediction function, 10
pseudolikelihood, 53

quadratic programming relaxation,
61

ranking, 38
repulsive potential, 16
risk, 10

score, 12
segmentation, 36
slack rescaling, 31, 103
slack variable, 30
stochastic gradient descent, 29,

55
structured SVM, 3, 30
submodular function, 49
sufficient statistics, 20
sum-product algorithm, 45

upper envelope, 89

variational inference, 47
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