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Motivation: Segmentation Problems
Object Recognition in Computer Vision

.....
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..

bicycle

..

road

• Given an image. Task: locate the objects in it.
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Motivation: Segmentation Problems
Object Recognition in Computer Vision
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road

• Given an image. Task: locate the objects in it.
• Strong dependencies among labels between closeby pixels.

“pixel is likely grass if neighboring pixels are grass”
• Key idea: Impose some structural constraints.

Predict labels of the pixels jointly.
• This thesis: learning & prediction with structured data.

Patrick Pletscher Towards Accurate Structured Output Learning and Prediction 2/16...

2/16



.

Additional Examples of Structured Data
• Computer Vision: Image denoising or stereo.

....

• Natural language processing: Parsing or part-of-speech tagging.

..wizards. make. toxic. brew. for. the. evil. queen.

noun

.

verb

.

adj

.

noun

.

prep

.

dt

.

adj

.

noun

• Biology: Protein side-chain prediction and design.
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Structured Output Prediction
.
Setting
..

.

• Given observed input variables x ∈ X ; usually X = RD .
• Predict a multivariate discrete output variable y ∈ Y .
• Learning: Find good predictor fw(x) : X → Y . Parameterized by w .
• Energy E (y , x, w)

◦ Cost function to score the different outputs.
◦ Models the dependencies.
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Structured Output Prediction
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Setting
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• Given observed input variables x ∈ X ; usually X = RD .
• Predict a multivariate discrete output variable y ∈ Y .
• Learning: Find good predictor fw(x) : X → Y . Parameterized by w .
• Energy E (y , x, w)

◦ Cost function to score the different outputs.
◦ Models the dependencies.

.
Standard Binary Classification
..

.

• Binary classification as a special case: Y = {−1, 1}.
• Linear prediction function: fw(x) = sign⟨w , x⟩.
• Energy: E (y , x, w) = −y⟨w , x⟩
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Structured Models: Why Is It Difficult?
.
Prediction for an Input x
..

.

Choose the best output: y⋆ = fw(x) = argminy∈Y E (y , x, w).

Due to dependencies no obvious way how to do this
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.

Structured Models: Why Is It Difficult?
.
Prediction for an Input x
..

.

Choose the best output: y⋆ = fw(x) = argminy∈Y E (y , x, w).

Due to dependencies no obvious way how to do this

.
Exhaustive Enumeration? Here: Object Recognition
..

.

• M pixels, K different object classes. |Y| = KM possibilities.
• Usually: K > 10, M ≫ 10 × 10.
• Compare to: 1080 atoms in the universe.
• Prediction as a computational problem.

.
Need for Clever Algorithms and Approximations
..

.

• Some problems exactly tractable. But often only approximate.
• Learning the energy: Even harder as prediction a subprocedure.
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SOP Overview – Energy

• “Blueprint of a model” G = (V, E).

.......... ......

• Linear dependence on parameters:

E (y , x, w) = −⟨w , ϕ(x, y)⟩

• Explicit way to write the energy:

E (y) =
∑
i∈V

θi(yi) +
∑

(i ,j)∈E
θij(yi , yj)

construct θ from w and x .

..
yi − yj.

θij(yi , yj)

..
yi − yj.

θij(yi , yj)

.

.. structure.∆y⋆(y) .

Learning

.

train data

.

Prediction

.

unseen x

.

Evaluation

.

y⋆

.

Happy?

.

w⋆

.

y
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SOP Overview – Loss

• Loss: the smaller the better!

..∆..
(

..
)

= 0

..∆..
(

..
)

= 0.5

• Example: Missclassified pixels.

∆y⋆(y) =
∑
i∈V

yi ̸= y⋆
i

• More complex losses (wrong direction):
◦ Overlap of bounding boxes
◦ F1 score
◦ Area-under-curve

.. structure.∆y⋆(y) .

Learning

.

train data

.

Prediction

.

unseen x

.

Evaluation

.

y⋆

.

Happy?

.

w⋆

.

y
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SOP Overview – Learning

• Goal: Learn a good energy.
ground-truth has small
energy

• Learning = Estimation of w⋆.

min
w

λ

2 ∥w∥2︸ ︷︷ ︸
regularizer

+ 1
N

N∑
n=1

ℓ(w , xn, yn)︸ ︷︷ ︸
surrogate loss

1. Max-margin loss for (x, y⋆):

E (y⋆, x, w)−min
y∈Y

[E (y , x, w) − ∆y⋆(y)]

2. Log-loss for (x, y⋆):

E (y⋆, x, w)+log
∑
y∈Y

exp(−E (y , x, w))

.. structure.∆y⋆(y) .

Learning

.

train data

.

Prediction

.

unseen x

.

Evaluation

.

y⋆

.

Happy?

.

w⋆

.

y
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SOP Overview – Prediction

• Given input x and weights w⋆.
• Construct potentials: w⋆, x 7→ θ.
• Minimize energy.

min
y∈Y

∑
i∈V

θi(yi) +
∑

(i ,j)∈E
θij(yi , yj)

.. structure.∆y⋆(y) .

Learning

.

train data

.

Prediction

.

unseen x

.

Evaluation

.

y⋆

.

Happy?

.

w⋆

.

y
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SOP Overview – Evaluation

Compare prediction y to ground-truth
y⋆ using the loss function.

.. structure.∆y⋆(y) .

Learning

.

train data

.

Prediction

.

unseen x

.

Evaluation

.

y⋆

.

Happy?

.

w⋆

.

y
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SOP Overview – Tractability

Exact algorithms for loopy graphs only if

1. E (y) submodular and binary:

θij(0, 0)+θij(1, 1) ≤ θij(0, 1)+θij(1, 0)

2. Loss function “easy”.

3. Max-margin for learning.

.. structure.∆y⋆(y) .

Learning

.

train data

.

Prediction

.

unseen x

.

Evaluation

.

y⋆

.

Happy?

.

w⋆

.

y
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My PhD Thesis

Learning:

• Pletscher & Kohli, AISTATS 2012.

• Pletscher & Ong, AISTATS 2012.

• Lacoste-Julien, Jaggi, Schmidt & Pletscher, 2012.

• Pletscher, Ong & Buhmann, ECML 2010.

• Pletscher, Ong & Buhmann, AISTATS 2009.

Prediction:

• Pletscher & Wulff, ICML 2012.

Evaluation:

• Pletscher, Nowozin, Kohli & Rother, DAGM 2011.

.. structure.∆y⋆(y) .
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LPQP for Energy Minimization
Pletscher & Wulff, ICML 2012

.
Novel Algorithm for Approximate Energy Minimization
..

.

• Compute minimum energy assignment for general pairwise energies:

min
y

E (y) = min
y

∑
i∈V

θi(yi) +
∑

(i ,j)∈E
θij(yi , yj).

• Combination of two relaxations:
◦ Linear Programming (Schlesinger 1976).
◦ Quadratic Programming (Ravikumar and Lafferty 2006).

• Efficient Message Passing Algorithms.
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Linear and Quadratic Programming Relaxations

..

θ
.
LP for Marginal Polytope
..

.

min
µ∈M

∑
i∈V

θT
i µi +

∑
(i ,j)∈E

θT
ij µij

But: M is exponentially large!
. .

.
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Linear and Quadratic Programming Relaxations

..

θ
.
LP for Marginal Polytope
..

.

min
µ∈M

∑
i∈V

θT
i µi +

∑
(i ,j)∈E

θT
ij µij

But: M is exponentially large!
. .

.
.
LP for Local Marginal Polytope
..

.

min
µ∈LG

∑
i∈V

θT
i µi +

∑
(i ,j)∈E

θT
ij µij

..

outer approximation
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Linear and Quadratic Programming Relaxations

.

.
LP for Marginal Polytope
..

.

min
µ∈M

∑
i∈V

θT
i µi +

∑
(i ,j)∈E

θT
ij µij

But: M is exponentially large!
. .

.
.
LP for Local Marginal Polytope
..

.

min
µ∈LG

∑
i∈V

θT
i µi +

∑
(i ,j)∈E

θT
ij µij

.
.
Quadratic Programming
..

.

min
µ∈LG

∑
i∈V

θT
i µi +

∑
(i ,j)∈E

θT
ij µij

s.t. µij = vec(µiµ
T
j ) ∀(i , j) ∈ E

..

outer approximation

.

inner approximation
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LPQP: Combine LP and QP relaxations
.
Joint LP and QP Objective
..

.

min
µ∈LG

θTµ + ρ
∑

(i ,j)∈E
DKL(µij , µiµ

T
j )

︸ ︷︷ ︸
encourages consistency

.

.
Numerical Solution
..

.

• Non-convex KL divergence: use the Concave-Convex Procedure.
• Iteratively solve convex optimization problems.
• Efficient message-passing algorithms.
• Gradual increase of ρ.
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Decision Tree Fields
LPQP Results in Low Energy Solutions

LP
Q

P
SA

51.6 46.4 45.9 43.5 42.5
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High-order Loss Functions
Pletscher & Kohli, AISTATS 2012

.
Exact Max-margin Learning for High-order Losses
..

.

• High-order loss ∆y⋆(y): does not factorize into unaries∣∣∣∣∣∑
i∈V

yi −
∑
i∈V

y⋆
i

∣∣∣∣∣︸ ︷︷ ︸
Label-count loss

vs.
∑
i∈V

yi ̸= y⋆
i︸ ︷︷ ︸

Hamming loss

• Maximum margin ⇔ Energy Minimization:

ℓmm(w , x, y⋆) = E (y⋆, x, w) − min
y∈Y

[E (y , x, w) − ∆y⋆(y)]

• We characterize a family of tractable high-order loss functions.
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Label-count Loss: Introduce Auxiliary Variable

min
y ,z∈{0,1}

E (y , x, w) +
(

2z
(∑

i∈V
y⋆

i −
∑
i∈V

yi

)
+
∑
i∈V

yi −
∑
i∈V

y⋆
i

)
︸ ︷︷ ︸

Label-count loss: pairwise representation

..

−∆Count
y⋆ (y)

.
∑

i∈V yi.
c

.

∑
i∈V y⋆

i

Label-count loss

...

z

.................

yi

.

0

.

1

.

z

.

0

.

1

.

0

.

1

.

0

.

−1

.

z

.

0

.

1

.

−c

.

c

Pairwise graphical model
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.

Label-count Loss: Results

loss ratio = ∆y⋆(f Hamming
w (x))

∆y⋆(f Count
w (x))

...
..

1

.
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Label-count loss evaluation
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Summary & Future Work
.
Summary
..

.

• Work in most aspects of structured output prediction and learning.
• Goal: fast and accurate approximations for training and prediction.

.
Future Work
..

.

• Smooth-max for direct loss minimization.
• Max-margin learning on a relaxed polytope. Use similar ideas as in

LPQP for enforcing consistency.
• Applications. Currently working with ImageNet, a 2 TB dataset.
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Discussion
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