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Abstract

Models such as pairwise conditional random
fields (CRFs) are extremely popular in com-
puter vision and various other machine learn-
ing disciplines. However, they have limited
expressive power and often cannot represent
the posterior distribution correctly. While
learning the parameters of such models which
have insufficient expressivity, researchers use
loss functions to penalize certain misrepre-
sentations of the solution space. Till now, re-
searchers have used only simplistic loss func-
tions such as the Hamming loss, to enable
efficient inference. The paper shows how so-
phisticated and useful higher order loss func-
tions can be incorporated in the learning pro-
cess. These loss functions ensure that the
MAP solution does not deviate much from
the ground truth in terms of certain higher
order statistics. We propose a learning algo-
rithm which uses the recently proposed lower-
envelop representation of higher order func-
tions to transform them to pairwise func-
tions, which allow efficient inference. We test
the efficacy of our method on the problem of
foreground-background image segmentation.
Experimental results show that the incorpo-
ration of higher order loss functions in the
learning formulation using our method leads
to much better results compared to those
obtained by using the traditional Hamming
loss.

1 Introduction

Probabilistic models such as conditional random fields
(CRFs) are extremely popular machine learning disci-
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plines. Pairwise CRFs, in particular, have been used
to formulate many image labeling problems in com-
puter vision (Szeliski et al., 2008). However, their in-
ability to handle higher order dependencies between
random variables restricts their expressive power, and
makes them unable to represent the data well (Sud-
derth & Jordan, 2008) i.e., the ground truth may not
be the Maximum a Posterior (MAP) solution under
the model.

Models containing higher order factors are able to en-
code complex dependencies between groups of vari-
ables, and can encourage solutions which match the
statistics of the ground truth solution (Potetz, 2007;
Roth & Black, 2005; Woodford et al., 2009). However,
the high computational cost of performing MAP infer-
ence in such models has inhibited their use (Lan et al.,
2006). Instead, there has been a widespread adoption
of the simpler and less powerful pairwise-CRF models
which allow efficient inference (Szeliski et al., 2008).

While learning the parameters of models with insuffi-
cient expressivity, researchers can penalize certain mis-
representations of the solution space using a ‘loss func-
tion’ which specifies the deviations from ground truth
that the learning algorithm should avoid (Tsochan-
taridis et al., 2005; Taskar et al., 2003). Most previ-
ous works on these topics have used simple choices
of the loss function, such as the Hamming loss or
squared loss, which lead to tractable learning algo-
rithms (Szummer et al., 2008). However, in real world
applications, researchers might prefer more general
loss functions which penalize deviations in some higher
order statistics.

The ability to use such higher order loss functions is
particularly important for many image labeling prob-
lems in medical imaging where predictions other than
pixel labelling accuracy (Hamming loss) might be im-
portant. For instance, in some diagnostic scenarios, ra-
diologists/physicians are interested in the area/volume
of the segmentation of a tissue or tumor that is un-
der investigation. In such cases, a loss function that
heavily penalizes solutions whose volume/area is very
different from that of the ground truth should be used.
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In this paper, we show how to learn the parameters of
low-order models such as pairwise CRFs under higher-
order loss functions. These loss functions can ensure
that the MAP solution does not deviate much from the
ground truth in terms of certain higher order statis-
tics. We propose an efficient learning algorithm which
uses the lower-envelop representation of higher order
functions (Kohli & Kumar, 2010) to transform them
to pairwise functions. We demonstrate the power of
our method on the problem of foreground-background
image segmentation. Experimental results show that
our method is able to obtain parameters which lead to
better results compared to the traditional approach.

2 Max-margin learning

This section reviews max-margin learning (Taskar
et al., 2003; Tsochantaridis et al., 2005) and introduces
our notation. For a given input x ∈ X we consider
models that predict a multivariate output y ∈ Y1 by
maximizing a linearly parametrized score function (a
MAP predictor):

fw(x) = argmax
y∈Y

〈w,φ(x,y)〉. (1)

Here φ(x,y) denotes a mapping of the input and out-
put variables to a joint input/output feature space.
In computer vision, such a feature map is generally
specified implicitly through a graphical model. Fur-
thermore, w denote the parameters of the model. In
our work we consider pairwise models G = (V, E) with
energies of the form

E(y,x,w) = −〈w,φ(x,y)〉 =∑
i∈V

ψi(yi,x;wu) +
∑

(i,j)∈E

ψij(yi, yj ,x;wp). (2)

Here w is separated into parameters for the unary po-
tentials (wu) and pairwise potentials (wp). The max-
imization problem in (1) can alternatively be written
as an energy minimization

fw(x) = argmin
y∈Y

E(y,x,w). (3)

Having defined the form of the prediction func-
tion, we now consider learning the parameters w
of such a model. Given the training data set
{(x1,y1), . . . , (xN ,yN )}, max-margin learning2 (or
equivalently the structured SVM) formulates an upper
bound on the empirical risk using a quadratic program
(QP) with a combinatorial number of constraints. The

1Generally the dimension of the output space depends
on the input x, which is neglected here.

2We consider the margin rescaled version.

exponential number of constraints can be dealt with by
a cutting-plane approach (Tsochantaridis et al., 2005).
The resulting QP for a regularizer weight λ reads as
follows:

min
w,ξ

λ

2
‖w‖2 +

N∑
n=1

ξn (4)

s.t. max
y∈Y

[〈w,φ(xn,y)〉+ ∆yn(y)] (5)

− 〈w,φ(xn,yn)〉 ≥ ξn ∀n
ξn ≥ 0.

The slack-variable ξn measures the surrogate loss of
the n-th example. ∆yn(y) denotes an application-
specific loss function, measuring the error incurred
when predicting y instead of the ground truth output
yn. We shall denote a generic ground truth label by
y∗. The loss of an example, as given by the constraint
in (5) is convex and hence the overall optimization
problem allows for efficient optimization over w. The
QP is typically solved by variants of the cutting-plane
method shown in Algorithm 1. The algorithm oper-
ates in an alternating fashion by first generating the
constraints for the current parameter estimates and
thereafter solving the QP with the extended set of con-
straints.

Algorithm 1 Cutting-plane algorithm as in (Finley
& Joachims, 2008).

Require: (x1,y1), . . . , (xN ,yN ), λ, ε,∆y∗(· ).
1: Sn ← ∅ for n = 1, . . . , N .
2: repeat
3: for n = 1, . . . , N do
4: H(y):= ∆yn(y)+ 〈w,φ(xn,y)− φ(xn,yn)〉
5: compute ŷ = argmaxy∈Y H(y)
6: compute ξn = max{0,maxy∈Sn H(y)}
7: if H(ŷ) > ξn + ε then
8: Sn ← Sn ∪ {ŷ}
9: w ← optimize primal over

⋃
n S

n

10: end if
11: end for
12: until no Sn has changed during iteration

Line 9 of Algorithm 1 corresponds to solving a stan-
dard QP for the constraints in

⋃
n S

n (a linear number
of constraints as in each iteration at most one addi-
tional constraint is added for each example). The loss
augmented inference problem on line 5 poses the ma-
jor computational bottleneck for many applications.
Here, an energy minimization of the form (3) needs
to be solved, with one important difference: The neg-
ative loss term enters the energy. Depending on the
loss term this can render the inference problem in-
tractable. The loss augmented inference problem is
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investigated in detail in section 4. The next section
discusses loss functions in general and introduces the
label-count loss, which is promoted in our work.

3 Loss functions

Max-margin learning leaves the choice of the loss func-
tion ∆y∗(y) unspecified. The loss allows the researcher
to adjust the parameter estimation to the evaluation
which follows the learning step. In our work we differ-
entiate between low-order losses, which factorize, and
high-order losses, which do not factorize. Factoriza-
tion is considered to be a key property of a loss to
maintain computational tractability.

3.1 Low-order loss functions

For image labelling in computer vision a popular choice
is the pixelwise error, or also Hamming error. It is
defined as:

∆hamming
y∗ (y) =

∑
i∈V

yi 6= y∗i . (6)

For image labelling problems, it tries to prevent solu-
tions with high pixel labelling error from having low
energy under the model compared to the ground truth.
If there is a natural ordering on the labels, such as in
image denoising, another common choice for the loss is
the squared pixelwise error. For the binary problems
studied in our work, it is equivalent to the Hamming
loss.

3.2 High-order loss functions

In many machine learning applications, practitioners
are concerned with errors other than the simple Ham-
ming loss. This is especially the case in medical imag-
ing tasks involving segmentation of particular tissues
or tumors. In such problems, radiologists and physi-
cians are sometimes more interested in measuring the
exact volume or area of the tumor (or tissue) to ana-
lyze if it is increasing or decreasing in size. This pref-
erence can be handled during the learning process by
using a label-count based loss function.

More formally, consider a two-label image segmen-
tation problem where we have to assign the label
‘0’ (representing ‘tumour’) or ‘1’ (representing ‘non-
tumour’) to every pixel/voxel in the image/volume.
The area/volume based label-count loss function in
this case is defined as:

∆count
y∗ (y) =

∣∣∣∣∣∑
i∈V

yi −
∑
i∈V

y∗i

∣∣∣∣∣ . (7)

Such a loss function prevents image labellings (seg-
mentations) with substantially different area/volume

compared to the ground truth to be assigned a low
energy under the model. As we will show, despite the
high-order form of the label-count loss, learning with
it in the max-margin framework is tractable.

It is easy to show that the label-count loss is a lower
bound on the Hamming loss:

∆count
y∗ (y) ≤ ∆hamming

y∗ (y). (8)

The work of Lempitsky & Zisserman (2010), Gould
(2011) and Tarlow & Zemel (2011) are most closely re-
lated to our paper. In (Lempitsky & Zisserman, 2010)
a learning approach for counting is introduced. The
major difference to our work stems from the model
that is learned. In their work a continuous regres-
sion function is trained, which predicts for each pixel
a positive real independent of all its neighboring pix-
els. In our work a CRF is used, which includes depen-
dencies among variables, only the loss term in learn-
ing is changed. (Gould, 2011) discusses max-margin
parameter learning in graphical models that contain
potentials with a linear lower envelope representa-
tion. However, the loss function used in their work
is still restricted to be a simple Hamming loss. The
idea of learning with higher-order losses is also stud-
ied in (Tarlow & Zemel, 2011). They discuss several
higher-order loss functions, but only approximate al-
gorithms are presented. To the best of our knowledge,
our work introduces for the first time a subclass of
high-order loss functions, for which max-margin learn-
ing remains tractable.

4 Loss augmented inference and
lower-envelope representation

The loss-augmented energy minimization problem for
a given input/output pair (x,y∗) is given by

min
y
E(y,x,w)−∆y∗(y). (9)

Even on its own, the problem of minimizing a gen-
eral energy function of discrete variables is a NP-hard
problem. However, certain classes of functions have
been identified for which the problem can be solved
exactly in polynomial time. These include pairwise
functions that are defined over graphs that are tree-
structured (Pearl, 1986) or perfect (Jebara, 2009).

Another important family of tractable functions are
submodular functions which are discrete analogues of
convex functions (Fujishige, 1991; Lovasz, 1983), a for-
mal definition is given in the appendix. Submodular
functions are particularly important because of their
wide use in modeling labelling problems in computer
vision such as 3D voxel segmentation (Snow et al.,
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∆count
y∗ (y)

∑
i∈V yi

c

f2(y)

f1(y)

(a) Upper envelope for ∆count
y∗ (y).

−∆count
y∗ (y)

∑
i∈V yi

c

f2(y)

f1(y)

(b) Lower envelope for −∆count
y∗ (y).

−∆capped
y∗ (y)

∑
i∈V yi

c

f2(y)

f1(y)

f3(y)

(c) Capped loss.

Figure 1: Upper and lower envelope representations of the label-count loss and its negation. Here c :=
∑

i∈V y
∗
i .

Interestingly, as the loss enters the loss-augmented energy with a negative sign, the resulting energy minimization
problem miny E(y,x,w)−∆count

y∗ (y) becomes tractable. (c) shows an example of a loss which can be described
as the lower envelope of three linear functions.

2000) and foreground-background image segmentation
problems (Boykov & Jolly, 2001; Blake et al., 2004).

The presence of the loss term in the loss augmented
energy minimization problem in (9) has the potential
to make it harder to minimize. The Hamming loss,
however, has the nice property that it decomposes into
unary terms which can be integrated in the energy,
and thus does not make the loss-augmented energy
minimization problem harder (Szummer et al., 2008).

4.1 Compact representation of higher-order
loss functions

While it is easy to incorporate the Hamming loss in the
learning formulation, this is not true for higher order
loss functions. In fact, a general n order loss function
defined on k-state variables can require up to kn pa-
rameters for just its definition. In recent years a lot of
research has been done on developing compact repre-
sentation of higher-order functions (Kohli et al., 2007;
Rother et al., 2009; Kohli & Kumar, 2010). In partic-
ular, Kohli & Kumar (2010) proposed a representation
based on upper and lower envelopes of linear functions
which enables the use of many popular classes of higher
order potentials employed in computer vision. More
formally, they represent higher order functions as:

fh(y) = ⊗q∈Qf
q(y) (10)

where ⊗ = {max,min}, and Q indexes a set of linear
functions, defined as

fq(y) = µq +
∑
i∈V

∑
a∈L

νqiaδ(yi = a) (11)

where the weights νqia and the constant term µq are
the parameters of the linear function fq(·), and the

function δ(yi = a) returns 1 if variable yi takes label a
and returns 0 for all other labels. While the ⊗ =‘min’
results in a lower envelope of the linear function, ‘max’
results in the upper envelope.

The upper envelope representation, in particular, is
very powerful and is able to encode sophisticated sil-
houette constraints for 3D reconstruction (Kohli &
Kumar, 2010; Kolev & Cremers, 2008). It can also
be used to compactly represent general higher order
energy terms which encourage solutions to have a par-
ticular distribution of labels. Woodford et al. (2009)
had earlier shown that such terms were very useful in
formulations of image labelling problems such as image
denoising and texture, and led to much better results.

Our higher order loss term defined in equation (7) can
be represented by taking the upper envelope of two
linear functions f1(·) and f2(·) that are defined as:

f1(y) =
∑
i∈V

yi −
∑
i∈V

y∗i , (12)

f2(y) =
∑
i∈V

y∗i −
∑
i∈V

yi. (13)

This is illustrated in Fig. 1a.

4.2 Minimizing loss augmented energy
functions

Although upper envelope functions are able to repre-
sent a large class of useful higher order functions, in-
ference in models containing upper envelope potentials
involves the solution of a hard min-max optimization
problem (Kohli & Kumar, 2010).

We made the observation that the loss term in the
loss-augmented energy minimization problem (9) has
a negative coefficient, which allows us to represent the
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label-count based loss (7) by the lower envelope of the
functions defined in equation (12) and (13) (visualized
in Fig. 1b).

Kohli and Kumar showed that the minimization of
higher order functions that can be represented as lower
envelopes of linear functions can be transformed to
the minimization of a pairwise energy function with
the addition of an auxiliary variable. In fact, in some
cases, the resulting pairwise energy function can be
shown to be submodular (Boros & Hammer, 2002; Kol-
mogorov & Zabih, 2004) and hence can be minimized
by solving an minimum cost st-cut problem (Kohli
et al., 2008). This is the case for all higher-order func-
tions of Boolean variables which are defined as:

fh(y) = F
(∑

i∈V
yi

)
, (14)

where F is a concave function. The worst case time
complexity of the procedure described above is poly-
nomial in the number of variables. A related family
of higher order submodular functions which can be
efficiently minimized was characterized in (Stobbe &
Krause, 2010). Next, we consider the loss augmented
inference for the label-count loss in more detail.

4.3 Label-count loss augmented inference

The minimization of the negative label-count based
loss (7) can be transformed to the following pairwise
submodular function minimization problem:

min
y
−∆count

y∗ (y)

= min
y
−
∣∣∣∣∣∑
i∈V

yi −
∑
i∈V

y∗i

∣∣∣∣∣ (15)

= min
y,z∈{0,1}

−z
(∑

i∈V
yi −

∑
i∈V

y∗i

)

−(1− z)
(∑

i∈V
y∗i −

∑
i∈V

yi

)

= min
y,z∈{0,1}

2z

(∑
i∈V

y∗i −
∑
i∈V

yi

)
+
∑
i∈V

yi −
∑
i∈V

y∗i .

The full energy minimization for the count loss aug-
mented inference reads as follows

min
y,z∈{0,1}

E(y,x,w) + 2z

(∑
i∈V

y∗i −
∑
i∈V

yi

)
+
∑
i∈V

yi −
∑
i∈V

y∗i . (16)

We assume that the original energy E(y,x,w) is sub-
modular. The pairwise problem above is exactly solved

by graph-cut (Boykov, 2001) on the original graph G
where we add one node for the variable z and |V| new
edges connecting each segmentation variable yi to the
auxiliary variable z. The pairwise energy construction
is visualized in Fig. 2.

z

yi
0

1

z
0 1

0

1

0

−1

z
0 1

−c c

Figure 2: Pairwise graph used for solving the label-
count loss augmented inference problem. The poten-
tials of the edges connecting the segmentation nodes yi
to the auxiliary node z (which are shown in blue) are
visualized to the left. The unary potential of the aux-
iliary variable z to the right, where c :=

∑
i y
∗
i . Stan-

dard graph-cut solvers can be applied to this problem.

Unfortunately, we found the de-facto standard com-
puter vision graph-cut algorithm by Boykov & Kol-
mogorov (2004) to run fairly slowly on these problem
instances. We attribute this to the dense connectivity
of the auxiliary node z. This problem is in theory, and
as is turns out also in practice, solved by the recent
iterative breadth-first search (IBFS) graph-cut algo-
rithm introduced in (Goldberg et al., 2011). We found
this algorithm to be roughly an order of magnitude
more efficient than the Boykov-Kolmogorov algorithm.
Learning on a small subset of the data discussed in the
next section took two minutes when IBFS was used
and around 25 minutes with the Boykov-Kolmogorov
algorithm.

Alternatively, for minimizing the loss augmented en-
ergy with a single Boolean z, as in (16), we can solve
the minimization efficiently by performing energy min-
imization twice in the original graph (for z = 0 and
z = 1). Each choice of z results in different unaries.
This approach does however not scale to the case where
we have multiple zs as the number of sub-problems
grows exponentially. If we have a loss function with
10 zs we will have to do the minimization 210 times.

5 Experiments

We implemented the max-margin learning in Matlab.
For solving the QP the MOSEK solver was used. The
loss augmented inference with IBFS was implemented
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in C++ through a MEX wrapper. The IBFS code was
downloaded from the authors webpage and modified
to allow for double precision energies (as opposed to
integer precision). Submodularity of the model was
explicitly enforced in training by ensuring that all the
edge potential’s off-diagonals are larger than the di-
agonals. This can be achieved by adding additional
constraints to the QP. The loss is always normalized
by the number of pixels such that the loss is upper
bounded by one.

5.1 Cell segmentation

Counting tasks naturally arise in many medical appli-
cations. The estimation of the progression of cancer
in a tissue or the density of cells in microscope images
are two examples. As a first experiment we study the
problem of counting the number of mitochondria cell
pixels in an image. The dataset is visualized in Fig. 3.
The images have been provided by Ángel Merchán and
Javier de Felipe from the Cajal Blue Brain team at
the Universidad Politécnica de Madrid. Three images

Figure 3: Electroscopic image showing the mitochon-
dria cells in red.

were used for learning, two images for the validation
and the remaining five images for testing. The images
have a resolution of 986×735. The pairwise CRF con-
sisted of a unary term with three features (the response
of a unary classifier for mitochondria and synapse de-
tection and an additional bias feature). The pairwise
term incorporated two features (color difference be-
tween neighboring pixels and a bias). The results
are shown in a box plot in Fig. 4. As expected the
label-count loss trained model performs better than
the Hamming loss trained model if the label-count loss
is used for the evaluation and vice-versa if evaluated
on the Hamming loss.

We also compared our lower envelope inference
approach to the compose max-product algo-

−1

−0.5

0

0.5

1

x 10
−3

hamming count
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s
s
 d
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n

c
e

Figure 4: Results for the mitochondria segmentation.
We plot the normalized loss difference between the
Hamming loss trained model and the one trained us-
ing label-count loss. The x-axis shows the loss used
for the evaluation of the predictions. The negative
value for the Hamming loss evaluation indicates that if
Hamming loss is used for evaluation, training with the
Hamming loss is superior. The opposite is true when
evaluation considers the label-count loss as learning
with the label-count results in a lower loss.

rithm (Duchi et al., 2006) which is used in (Tarlow
& Zemel, 2011). The latter inference approach
is in general only approximate. However, for the
cell segmentation problem in combination with the
label-count loss, the solutions obtained using the
two different loss-augmented inference algorithms
were almost identical. The running time of the
two approaches is also comparable. Our inference
algorithm is slightly more efficient, but also more
adapted to the count-loss.

5.2 Foreground-background segmentation

We check the effectiveness of the label-count loss for
the task of background-foreground segmentation on
the Grabcut dataset (Blake et al., 2004). We use the
extended dataset from (Gulshan et al., 2010). The
dataset consists of 151 images, each comes with a
ground truth segmentation. Furthermore, for each im-
age an initial user seed is specified by strokes mark-
ing pixels belonging to the foreground or to the back-
ground, respectively. As unary features we used the
three color channels together with the background and
foreground posterior probabilities as computed by the
Gaussian mixture model algorithm used in Grabcut.
Additionally we also included a constant feature to
correct for class bias. For the pairwise features we used
the color difference between the two pixels and again a
bias feature. The standard four-connected grid graph
is used as the basic model. Each edge is parametrized
by the same parameter. We also experimented with ex-
tensions of this basic model: In one variant we consider
the eight-connected grid, in the other variant each di-
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(a) Hamming (c: 0.077, h: 0.077). (b) Count (c: 0.037, h: 0.040). (c) Ground-truth.

(d) Hamming (c: 0.047, h: 0.047). (e) Count (c: 0.040, h: 0.043). (f) Ground-truth.

(g) Hamming (c: 0.069, h: 0.069). (h) Count (c: 0.012, h: 0.124). (i) Ground-truth.

Figure 5: Segmentations on the test set for models trained using the Hamming loss (left) and the label-count loss
(middle). The image on the right shows the ground truth segmentation. We show the measured count loss and
Hamming loss in brackets. The bottom row shows a case where the model trained using the count loss shows a
much better count loss, however the Hamming loss substantially deteriorates due to the false positives. For the
first two images, the label-count loss trained model even outperforms the Hamming loss trained model in terms
of Hamming loss.

rection of the edge is parameterized using a different
parameter. The basic model is therefore specified by
an eight dimensional parameter, the eight-connected
model where each direction has its own parameter by
a 14-dimensional parameter. For learning 60 images
were used, 20 for the validation of the regularization
parameter λ, the remaining images were used for test-
ing.

Fig. 5 shows some of the learned segmentations and
Table 1 gives a comparison of the models trained us-
ing the Hamming loss and the label-count loss. The
results were averaged over four different data splits.
As expected, we observe that if the label-count loss is
used for the evaluation, the model that is trained using
this loss performs superior. More interesting is the re-
sult for the case when the Hamming loss is used for the
evaluation. Despite the fact that the appropriate loss

is used in training, we do not identify a statistically
significant advantage of the Hamming loss over the
label-count loss. This could be explained by the max-
margin objective only considering an upper bound on
the loss, and not the actual loss itself. The label-count
loss might suffer less from this upper bounding than
the Hamming loss.

6 Discussion

We have demonstrated, for the first time, how low-
order models like pairwise CRFs can be encouraged to
preserve higher order statistics by introducing higher
order loss functions in the learning process. The learn-
ing involves the minimization of the loss augmented
energy, which we show can be performed exactly for
certain loss functions by employing a transformation
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PPPPPPPPEval
Train

Hamming better (%) Count better (%)

4/
S Hamming 52.1± 7.0 47.9± 7.0

Count 33.8± 8.3 66.2± 8.3

4/
D Hamming 39.4± 6.1 60.6± 6.1

Count 29.6± 8.3 70.4± 8.3

8/
S Hamming 48.2± 11.9 51.8± 11.9

Count 32.0± 13.1 68.0± 13.1

8/
D Hamming 50.0± 9.2 50.0± 9.2

Count 40.5± 14.3 59.5± 14.3

Table 1: Test performance of models trained using the Hamming and the label-count loss for different model
structures. The structure of the model is shown on the far left (4 vs. 8 grid, same vs. different parameterization
of the edges). The second column shows the percentage of images for which the model trained using Hamming
loss has a lower evaluation loss. The third column shows the same information for the label-count loss. The rows
show the loss used in the evaluation. If the loss function affects training, we would expect both columns to show
values considerably above 50% for the corresponding loss. For learning with the label-count loss this is the case,
for the Hamming loss the two learned models perform roughly the same.

scheme. We demonstrate the efficacy of our method
by using a label-count loss while learning a pairwise
CRF model for binary image segmentation. The label-
count loss function is useful for applications that re-
quire the count of positively labeled pixels in an image
to match the count observed on a ground truth seg-
mentation. Our proposed algorithm enables efficient
max-margin learning under the label-count loss, and
leads to models that produces solutions with statistics
that are closer to the ground truth, compared to solu-
tions of models learned using the standard Hamming
loss.
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A Submodularity

For the formal definition of submodular functions, con-
sider a function f(·) that is defined over the set of
variables y = {y1, y2, ..., yn} where each yi takes val-
ues from the label set L = {l1, l2, ...lL}. Then, given
an ordering over the label set L, the function f(·) is
submodular if all its projections3 on two variables sat-
isfy the constraint:

fp(a, b) + fp(a+ 1, b+ 1) ≤
fp(a, b+ 1) + fp(a+ 1, b), (17)

for all a, b ∈ L.

3A projection of any function f(·) is a function fp which
is obtained by fixing the values of some of the arguments
of f(·). For instance, fixing the value of k variables of the
function f1 : Rn → R produces the projection fp

1 : Rn−k →
R.
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