Learning Low-order Models for Enforcing High-order Statistics
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Lower and Upper Envelopes

e Many higher order functions can be represented as:

FP(y) = @qeaf(y)
where ® = {max, min}, and Q indexes a set of linear functions.

Patrick Pletscher, Pushmeet Kohli

Higher-order Statistics

e Standard CRF models usually trained using simple low-order losses.
e In real-world often more complex higher-order losses used for evaluation.
e Goal here: Train classifier directly with this higher-order loss.

e Our work introduces a higher-order loss for which we can train structured
SVMs exactly.

Train a predictor of the form

e min: lower envelope, max: upper envelope.
o Inference for upper envelope substantially more difficult (min-max).
e Label-count is upper envelope representable.

e Fortunately, negative sign makes loss lower envelope representable:
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Max-margin Learning

Label-count Loss Augmented Inference

The structured SVM considers the following quadratic program:
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Obtain the pairwise minimization problem:
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e Goal: Counting number of
mitochondria cell pixels in
an electroscopic image.

Loss Augmented Inference

e Need to efficiently solve the problem:

loss difference

e Right: Hamming loss
trained model minus
count-loss trained model.

min E(y7 X, W) - Ay*(y)
y

hamming count

e Notice the negative sign!

e We assume y; is binary and E(y, x, w) is submodular. Therefore: energy
minimization in the original model is exactly solvable.

Eval Train Hamming better (%) | Count better (%)
v Hamming 52.14+7.0 479+7.0
1 = . < Count 33.8+8.3 66.2 & 8.3
0SS Functions A Hamming 30.4 £ 6.1 60.6 £ 6.1
< Count 29.6 + 8.3 70.4 £ 8.3
9 Hamming 48.2 +11.9 51.8 +11.9
: : o Count 32.0 4+ 13.1 68.0 & 13.1
e Should reflect scoring used for evaluation. o Hamming | 50.0 £ 9. 50.0 £ 9.2
o Count 40.5 + 14.3 59.5 + 14.3

e But at the same time loss augmented inference should also be tractable!
e In practice for many segmentation problems Hamming loss is used:
hamming
Ay* (y) — Z.yi 7& .yi*'
IS
Loss augmented inference has same complexity as inference for original
model.

H (c: 0.069, h: 0.069)

Conclusions

e Max-margin learning with the label-count loss can be done exactly.

C (c: 0.012, h: 0.124) Ground-truth

e Only modifies the unaries.

e A low-order loss. What about higher-order losses?
e Leads to better results if only interested in the number of foreground pixels.
o Also see Danny Tarlow's poster here at AISTATS.
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e Here we study the label-count loss:

Ag(y) =

ZY:’ = ny*

Y% =%

o Useful if we are only interested in predicting the number of foreground
pixels, but not their location.

e Unfortunately label-count loss no longer factorizes!



