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Preface

This thesis is submitted to the Department of Computer Science in partial fulfillment of
the requirements for the degree of Master of Science in Computer Science at ETH Zürich
(Swiss Federal Institute of Technology Zurich).

In this thesis we study unsupervised clustering methods that select the number of
clusters on their own. Traditional methods based on information theory, compare dif-
ferent models by penalizing more complicated models. More recently a sophisticated
method, known as the Dirichlet process has been applied to clustering problems; one of
its biggest advantages is the theoretical sound foundation: we have one model for differ-
ent number of clusters. This however comes at a price, too: The inference is arguably
even harder than for “standard” clustering models, but in recent years researchers pro-
posed approximation algorithms that run efficiently, but sacrifice accuracy to a certain
extent. In this thesis we aim to empirically compare these algorithms on synthetic data.
We also compare the results with algorithms stemming from different motivations than
the Dirichlet process, such as the Akaike information criterion (AIC) or the Bayesian
information criterion (BIC).

In the second part we then study the application of the Dirichlet process to the problem
of biclustering and propose two novel nonparametric algorithms, each of them assuming
a different problem formulation. The two algorithms might also prove to be useful for
feature selection and dimensionality reduction.

Keywords: Dirichlet process, probabilistic inference, Gibbs sampling, variational infer-
ence, model order selection, finite mixture model, Bayesian information criterion (BIC),
Akaike information criterion (AIC), biclustering, nonparametric Bayesian modelling, fea-
ture selection.
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Mathematical Notation and Symbols

I have tried to keep this thesis report self-contained by reviewing important concepts
of probability theory and related fields in chapter 2, this should allow an interested
reader with a basic knowledge of linear algebra and calculus, as typically taught as part
of an undergraduate degree in engineering or science, to understand a fair part of this
documentation. However, for some of the more advanced topics discussed, a certain
exposure to concepts of pattern recognition, machine learning, probability & statistics
and algorithms is definitely recommended.

Also, I have tried to use a consistent notation throughout the documentation, this
might however deviate from the notation in some of the publications cited or standard
literature. Column vectors are always denoted by lowercase bold letters such as x. A
superscript T denotes the transpose of a matrix or a vector. Uppercase bold letters,
such as M , denote matrices. To denote the j-th component of a vector x, we use xj .

If we have N values x1, . . . ,xN of a d-dimensional vector, we will usually combine
the observations into a data matrix X in which the n-th row corresponds to the row
vector xT

n . Also, we define the scalar product as 〈· , · 〉 := 〈· , · 〉Rd + 〈· , · 〉Rd×d , where
the scalar product over vectors is the traditional inner product and the scalar product
over matrices is defined to be the trace of the matrix, i.e. 〈A,B〉Rd×d = tr(A·B); for
symmetric matrices this is the same as the scalar product of the vectorized matrices.

Probability and Statistics

Symbol Meaning

Ω sample space
A,B σ-fields, mostly Borel σ-fields
P (· ) probability mass function
p(· ) probability density function; e.g. the Gaussian
N (x|µ,Σ) Gaussian distribution with mean µ and covariance Σ
Dir(x|α) Dirichlet distribution with parameter α.
Mult(x|µ) Multinomial distribution with bin probabilities µ
Z normalization constant for densities
Ep[X] expected value of a random variable X, w.r.t. distribution p
∼ distributed according to; e.g. x ∼ N (µ,Σ)
D(q‖p) Kullback-Leibler divergence of distributions q and p
G0 prior distribution
F likelihood distribution
G distribution sampled from a Dirichlet process
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Mathematical Notation and Symbols

Clustering and model order selection

Symbol Meaning

θn cluster component of data point xn

θ∗k cluster component of cluster k, where k = 1, . . . , NC

NC number of clusters
N number of samples
d dimensionality of the data
X data, dimension N × d
zn assignment of sample n to a cluster
π1, . . . , πNC

mixing proportions of a mixture model
mk number of samples assigned to cluster k
DP(α,G0) Dirichlet process with concentration α and base measure G0

κ(NC) number of free parameters of a model with NC factors

The notation κ(NC) is missleading, as the complexity of a model of course does not
only depend on the number of clusters, but also on the model itself, i.e. for a Gaussian
where we estimate a full covariance matrix and the mean, one cluster has complexity
d+ d2. We dropped the conditioning on the model for not cluttering the notation.

Biclustering

Symbol Meaning

NO
C number of object clusters

O1, . . . ,ONO
C

clustering of the objects
NF

C number of feature clusters
F1, . . . ,FNF

C
clustering of the features

mO
µ number of samples assigned to object cluster µ

mF
ν number of samples assigned to feature cluster ν
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1 Introduction

Sometimes it’s hard to know where I stand. It’s
hard to know where I am. Well maybe it’s a
puzzle I don’t understand.

(Keane in ‘Is It Any Wonder’)

One of the most basic tasks in machine learning aims to find a classifier f , that given
an input X in RN×d outputs a labeling y in NN . There exist many different approaches
to build such a classifier; they can broadly be divided into supervised (labeling of train-
ing set is available and used in order to learn f) and unsupervised (where this label-
ing is not available/used). Supervised algorithms include traditional methods such as
neural networks or linear discriminant analysis (LDA), but also more sophisticated ap-
proaches such as support vector machines (SVMs). Popular examples of unsupervised
algorithms include k-means or the Gaussian mixture model (GMM) which is an example
of an Expectation-Maximization (EM) algorithm; the different labels/classes are usually
called clusters in unsupervised algorithms.

Traditional unsupervised algorithms however assume the number of clusters, e.g. the
k in the k-means algorithm, is known. If k is not known, one uses model order selection
(MOS) methods, such as the Bayesian information criterion (BIC). These approaches
use a clustering algorithm for differing number of clusters and compare the likelihood,
which should steadily increase when increasing k, and punish more complex models.
To rephrase: these methods are looking for a trade-off between prediction performance
(measured by the likelihood) and the complexity of the model, which increases the more
clusters we add. While often used, they however have at least one conceptual flaw:
we’re comparing different models, which from a theoretical standpoint is not desirable:
It would be best to have the model order selection included in the clustering model
itself, and this is exactly what the Dirichlet process is all about! However little is known
how the Dirichlet process performs compared to traditional MOS strategies. We try to
address this in the first part of this master’s thesis by a comparative study of different
MOS methods.

In the second part of this master’s thesis we will develop two novel nonparametric
Bayesian biclustering algorithms, which are also evaluated on some synthetic data sets.
In biclustering one has very similar problems as in standard clustering, like for exam-
ple determining the number of clusters. However, as in biclustering, we are not only
interested in a single clustering, but in two, the MOS question becomes arguably even
more significant. We address this problem with a nonparametric approach, that shows

1



1 Introduction

promising results.

In this thesis, we assume that the general big-picture approach is given by clustering.
However, it should be pointed out, that there exist also different approaches for similar
problems, which do not focus on clustering; a particularly interesting alternative is latent
feature identification, which is especially worthwhile to mention, as it is also possible
to define a nonparametric model by means of the Indian Buffet process [Griffiths and
Ghahramani, 2005]. Both, the Dirichlet process and the Indian Buffet process try to
address the MOS problem in a very similar way: they define a prior that assigns a non-
zero probability to all possible clusterings (latent features), the probabilities are however,
such that we can select a prior belief about the model order. We can then combine this
prior, in a general Bayesian manner, with the observations to infer a solution.

One of the main tools, which we will extensively use throughout this thesis is given by
graphical models and the inference algorithms that lie at the heart of such models. This
is a subfield of machine learning that developed at a fast pace and is now ubiquitous.
Graphical models are crucial, if the classification and learning problems are regarded as
a coupled system. An intuitive example for such a coupling is weather prediction: if
we had good weather during the past two weeks and today in the morning we see some
smaller clouds in the sky, we would still assume it’s gone be a sunny day; this might be
different if in the past we often had unstable weather conditions; the bottom line being
that the prediction is influenced by previous events which makes some random variables
coupled.

1.1 Thesis Overview

Even Isac Newton remarked in a letter:

If I have seen further it is by standing on the shoulders of giants.

However, to stand on the shoulders of giants we first have to climb them. For researchers
this means crawling through the literature and understanding the fundamentals of the
topic. We devote chapter 2 and chapter 3 to this: we review important concepts from
machine learning in chapter 2 and discuss some of the inference algorithms for the
Dirichlet process in chapter 3.

In chapter 4 we then compare the different methods for model order selection. This
includes a theoretical study and an empirical discussion.

Finally, in chapter 5 we study an application of the Dirichlet process: We introduce
two novel algorithms for biclustering.

1.2 Contributions

To the best of our knowledge nobody has ever seriously compared the Dirichlet process to
its information-theoretic competitors used in the parametric setting, and thus chapter 4
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1.2 Contributions

Machine Learning unsupervised

non-
parametric

DP

IBP

parametric

GMM

ACM

K
means

supervisedGraphical
models

Figure 1.1: Schematic overview of some of the topics covered in this thesis.

is novel. Chapter 4 is mainly a collection of results from an experimental comparison
between different MOS methods on synthetic data.

While not entirely novel, because MIT researchers proposed a similar model in the
cognitive science community [Kemp et al., 2006], the biclustering algorithm introduced
in chapter 5 should still be considered as a contribution to the field, as we consider
arbitrary count data instead of binary data, which makes our approach more general.
Also, we give an asymmetric biclustering algorithm, which could potentially be used for
unsupervised feature selection.
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2 Background

Karma Police, arrest this man, he talks in maths.
He buzzes like a fridge, he’s like a detuned radio.

(Radiohead in ‘Karma Police’)

In this chapter we introduce the mathematics that will be needed to understand the
Dirichlet process, this includes probability theory and statistics (sections 2.1, 2.2 and 2.3)
as well as graphical models (section 2.5). Furthermore we introduce more traditional
clustering approaches, such as the EM algorithm in section 2.4. Researchers in the field
might want to skip these sections and readily start with section 2.6 which introduces the
Dirichlet process and go back to the preparative sections as needed.

2.1 Basics of Probability Theory

In this section we give a really short introduction to the theory of probability and
statistics with a special focus towards afterwards introducing the Dirichlet process; this
introduction neither claims to be complete nor to be fully self-contained (some basics
from algebra and calculus are assumed to be known). In a first subsection we introduce
some basic definitions from measure theory, thereafter we’re ready to introduce proba-
bility, as it’s a special instance of a measure. The definitions are taken from [Schervish,
1995].

2.1.1 Measure and Integration Theory

A measure is a way of assigning numerical values to the “sizes” of sets.

Definition 2.1. A nonempty subset A of the power set of a set Ω is called a field (or
sometimes algebra) if

• A ∈ A implies Ac ∈ A,

• A1, A2 ∈ A implies A1 ∪A2 ∈ A.

A field A is called a σ-field if {Ai}∞i=1 ∈ A implies ∪∞i=1Ai ∈ A.

In other words if A is a σ-field, then it is nonempty, closed under complements and
closed under countable unions.

Definition 2.2 (Borel σ-field). Let C be the collection of intervals in R. The smallest
σ-field containing C is called the Borel σ-field .

5



2 Background

Definition 2.3 (Measurable space). A pair (Ω,A), where Ω is a set and A is a σ-field,
is called a measurable space.

Definition 2.4 (Measure). If (Ω,A) is a measurable space, then a function µ : A →
[0,∞] is called a measure if

• µ(∅) = 0,

• {Ai}∞i=1 mutually disjoint implies µ(∪∞i=1Ai) =
∑∞

i=1 µ(Ai).

Definition 2.5 (Measure space). If µ is a measure, the triple (Ω,A, µ) is called a measure
space.

Definition 2.6 (Measurable function). Suppose that Ω1 is a set with a σ-field A1 of
subsets, and let Ω2 be another set with a σ-field A2 of subsets. Suppose that f : Ω1 → Ω2

is a function. We say that f is measurable if for every A ∈ A2, f−1(A) ∈ A1.

Theorem 2.7. A measurable function f from one measure space (Ω1,A1, µ1) to a mea-
surable space (Ω2,A2), f : Ω1 → Ω2, induces a measure on the range Ω2. For each
A ∈ A2, define µ2(A) = µ1(f−1(A)). Integrals with respect to µ2 can be written as
integrals with respect to µ1 in the following way: If g : Ω2 → R is integrable, then∫

g(y)dµ2(y) =
∫
g(f(x))dµ1(x).

Remark. The integration used here is an extension of the standard Riemann integral to
integrate a function with respect to a measure.

Definition 2.8 (Induced Measure). The measure µ2 in Theorem 2.7 is called the measure
induced on (Ω2,A2) by f from µ1.

2.1.2 Mathematical Probability

Definition 2.9. A probability space is a measure space (Ω,A, µ) with µ(Ω) = 1. Each
element of A is called an event. If (Ω,A, µ) is a probability space, (X ,B) is a measurable
space, and X : Ω → X is measurable, then X is called a random quantity . If X = R and
B is the Borel σ-field, then X is called a random variable. Let µX be the probability
measure induced on (X ,B) by X from µ (see Definition 2.8). This probability measure
is called the distribution of X. The distribution of X is said to be discrete if there exists
a countable set A ⊆ X such that µX(A) = 1. The distribution of X is continuous if
µX({x}) = 0 for all x ∈ X .

Example 2.10. Let Ω = X = R with Borel σ-field. Let p be a nonnegative function such
that

∫
p(x) dx = 1. Define µ(A) =

∫
A p(x)dx and X(s) = s. Then X is a continuous

random variable with probability density function p, and µX = µ.

Example 2.11. Let Ω = R with Borel σ-field. Let X = {x1, x2, . . .}, a countable
set. Let P be a nonnegative function defined on X such that

∑∞
i=1 P (xi) = 1. Define

µ(A) =
∑

{i:xi∈A} P (xi). Then X is a discrete random variable with probability mass
function P , and µX = µ.

6



2.2 Important Probability Distributions

2.1.3 Exchangeability

Definition 2.12 (Exchangeable). A finite set X1, . . . , Xn of random quantities is said
to be exchangeable if every permutation of (X1, . . . , Xn) has the same joint distribu-
tion as every other permutation. An infinite collection is exchangeable if every finite
subcollection is exchangeable.

Theorem 2.13 (DeFinetti’s representation theorem). Let (Ω,A, µ) be a probability
space, and let (X ,B) be a Borel space. For each i, let Xi : Ω → X be measurable.
The sequence {Xi}∞i=1 is exchangeable if and only if there is a random probability mea-
sure P on (X ,B) such that, conditional on P = p, {Xi}∞i=1 are i.i.d. with distribution p.
Furthermore, if the sequence is exchangeable, then the distribution of P is unique, and
Pi(B) converges to P (B) almost surely for each B ∈ B.

What the DeFinetti Theorem tells us is, that if X1, X2, . . . are infinitely exchangeable
then the joint probability p(x1, x2, . . .) has a representation as a mixture:

p(x1, x2, . . .) =
∫

Ωθ

( ∞∏
i=1

p(xi|θ)
)
dP (θ),

for some random variable θ. This is illustrated in Figure 2.1.

∞
xn

θ

Figure 2.1: The DeFinetti Theorem as a graphical model.

While in this section we used capital letters to differentiate random variables from the
concrete realization, we won’t do this in the remainder of this thesis, mainly because we
will require a lot of variables and parameters and it would be a cumbersome task to also
differentiate between random variables and their realizations.

2.2 Important Probability Distributions

In this section we introduce some probability distributions, which we will use extensively
in the remainder of this thesis, these are: the Gaussian, the Multinomial, the Dirichlet
distribution and in the end a whole class of distributions, called the exponential family.

2.2.1 The Gaussian distribution

The Gaussian, also known as the normal distribution, is a widely used model for the
distribution of continuous variables. Its distribution for a d-dimensional vector x is given

7



2 Background

by

N (x|µ,Σ) :=
1

ZN (Σ)
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
, (2.1)

where µ is a d-dimensional mean vector, Σ is a d × d covariance matrix, and the nor-
malization constant ZN (Σ) is defined as follows

ZN (Σ) := (2π)d/2 det(Σ)1/2.

The Gaussian distribution has several important properties, we however won’t delve
into these, as it is beyond the scope of this report. Below in Figure 2.2 we show samples
from 2 different Gaussians for d = 2.

−5 −2.5 0 2.5 5

−5

−2.5

0

2.5

5

−4 −2 0 2 4

−2.5

0

2.5

5

Figure 2.2: Samples from the Gaussian distribution for different means and covariances.

2.2.2 The Multinomial distribution

Given K bins where bin k occurs with probability µk. The probabilities µk have to
follow the constraints µk ≥ 0 (non-negativity) and

∑K
k=1 µk = 1 (normalization) and

can be represented as a vector µ = (µ1, . . . , µK)T . Note that because of the summation
constraint, the distribution of the {µk} is confined to a simplex of dimensionality K−1.
Now let’s imaging drawing M times one of the bins with the corresponding probability;
this is a generalization of the Bernoulli variable, where we have K = 2. Again, we can
represent the outcome as a vector x, where xk for 1 ≤ k ≤ K reflects the number of
times bin k was drawn. The probability distribution of x is then given by a Multinomial
distribution:

Mult(x|µ,M) :=
M !

x1! · · ·xK !

K∏
k=1

µxk
k (2.2)

This is for example a popular distribution in natural language processing (NLP) as
there researchers often use the bag of words assumption: the order of the words within
a document doesn’t matter. A document can then be represented by a Multinomial
variable where K is the size of the vocabulary and M the size of the document (with

8



2.2 Important Probability Distributions

the stop words removed).

Sometimes we are only interested to sample a single assignment instead of a vector,
we then slightly abuse the notation by writing Mult(z|µ, 1), then z = k with probability
µk.

2.2.3 The Dirichlet distribution

The Dirichlet distribution is a well-known prior distribution for the parameter µ of
the Multinomial distribution; it can be seen as a distribution over the parameters of
a Multinomial distribution, as the resulting random variable x (of dimension K) is
constrained to the K−1 simplex. The Beta distribution is a special case of the Dirichlet
distribution for K = 2. The distribution is given by

Dir(x|α) :=
Γ(α0)

Γ(α1) · · ·Γ(αK)

K∏
k=1

xαk−1
k . (2.3)

Here Γ(x) is the Gamma function

Γ(x) :=
∫ ∞

0
ux−1e−u du.

For an integer x the equality Γ(x + 1) = x! holds. Furthermore we denote the sum of
the elements of α by α0:

α0 =
K∑

k=1

αk.

While as mentioned, x lies in the simplex of dimensionality K−1, α doesn’t necessarily
have to obey such constraints. However, it’s still useful to think about it as a normalized
vector, let’s introduce

α′ = α/α0.

Like this we can interpret α0 as the number of pseudo-measurements observed to obtain
α′. We see a concentration phenomena: the more observations we measure, the more
our confidence in α and hence the more peaked the Dirichlet distribution around α′. In
a Bayesian interpretation, the Dirichlet mean α′ could be said to be associated with a
prior belief α0. This is illustrated below in Figure 2.3: the bigger the value of α0, the
smaller the scatter of x and vice versa.

2.2.4 The Exponential Family

All of the distributions discussed so far in this section (and many more) are all members
of a general class of probability models called exponential families. It is useful to study
this generic class, as the members share many important properties and deriving them
in general makes the cumbersome and tedious individual derivation for each member
redundant.
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Figure 2.3: The Dirichlet distribution (we show the first and second dimension of x) for
different values of α. Left: α = [0.2, 1, 2], right: α = [20, 10, 7].

The exponential family of distributions over x, given parameters λ, is defined to be
the set of distributions of the form

p(x|λ) = h(x) exp{〈λ, s(x)〉 − a(λ)}, (2.4)

where x may be scalar or vector, and may be discrete or continuous. Here λ are called
the natural parameters of the distribution, and s(x) are the sufficient statistics of x.
The coefficient a(λ) is a coefficient that ensures that the distribution is normalized and
therefore satisfies

a(λ) = ln
(∫

Ωx

h(x) exp{〈λ, s(x)〉} dx
)
,

which is usually called the log partition function (or sometimes cumulant generating
function).

Using the general property of exponential families, that

E[λ] = ∇λa(λ),

we can compute expectations without integrating.

Next, we show that the Gaussian, the Multinomial and Dirichlet distributions are all
members of the exponential family.

Gaussian distribution

Let’s study the Gaussian distribution, given by

N (x|µ,Σ) :=
1

ZN (Σ)
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
.

10
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To bring this into the exponential form of (2.4), we introduce parameters as follows:

λ = [Σ−1µ,Σ−1]

s(x) = [x,−1
2
xxT ]

a(λ) =
d

2
ln(2π)− 1

2
ln(det(λ2)) +

1
2
λT

1 λ−1
2 λ1

h(x) = 1.

Where λ1 and λ2 denote the two different parts of the natural parameter vector λ, i.e.
λ1 = Σ−1µ and λ2 = Σ−1.

Multinomial distribution

Let’s study the Multinomial distribution, given by

Mult(x|µ,M) :=
M !

x1! · · ·xK !

K∏
k=1

µxk
k .

To bring this into the exponential form of (2.4), we introduce parameters as follows:

λ = [ln(µ1), . . . , ln(µK)]T

s(x) = [x1, . . . , xK ]T

a(λ) = 0

h(x) =
(
∑K

k=1 xk)!
x1! · · ·xK !

.

Dirichlet distribution

Let’s study the Dirichlet distribution, given by

Dir(x|α) :=
Γ(α0)

Γ(α1) · · ·Γ(αK)

K∏
k=1

xαk−1
k .

To bring this into the exponential form of (2.4), we introduce parameters as follows:

λ = [α1 − 1, . . . , αK − 1]T

s(x) = [ln(x1), . . . , ln(xK)]T

a(λ) =
K∑

k=1

ln(Γ(λk + 1))− ln Γ
( K∑

k=1

λk +K

)
h(x) = 1.

11



2 Background

2.3 Conjugate Priors

In general, for a given likelihood distribution F (x|θ), we can seek a prior G0(θ) that
is conjugate to the likelihood function, so that the posterior distribution has the same
functional form as the prior. As a remainder, the posterior is given by the likelihood
times the prior normalized by the evidence:

p(θ|x) =
F (x|θ)G0(θ)∫

Ωθ
F (x|θ)G0(θ) dθ

.

In this section we derive conjugate priors for two particularly interesting distribu-
tions. First we show that the Gaussian with known mean and covariance is conjugate
to a Gaussian likelihood with known covariance, second we prove that the Dirichlet dis-
tribution is conjugate to the Multinomial distribution.

The concept of conjugate priors is useful, as typical quantities like the evidence or the
posterior needed for sampling algorithms, can efficiently be sampled from and computed,
as long as efficient sampling algorithms for the prior are available; we’ll come back to
this in section 3.1.

To make it clear to the reader which distribution is used as a prior and which one as a
likelihood we use a different symbol for the two: the likelihood is always denoted by F ,
while the prior is denoted by G0. Often the likelihood and prior have hyperparameters
which we haven’t included in our notation for reasons of clarity; for example a Gaussian
prior has hyperparameters µθ and Σθ.

2.3.1 Gaussian/Gaussian

Assuming both, the likelihood and the prior have a multivariate Gaussian distribution
as introduced in subsection 2.2.1, i.e.

F (x|θ,Σx) =
1

ZN (Σx)
exp

{
−1

2
(x− θ)TΣ−1

x (x− θ)

}
,

and

G0(θ|µθ,Σθ) =
1

ZN (Σθ)
exp

{
−1

2
(θ − µθ)TΣ−1

θ (θ − µθ)

}
.

The parameters Σx,µθ and Σθ are assumed to be given. In the remainder we show
that the conjugate prior of the Gaussian distribution is a Gaussian distribution, too.
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The posterior is given by

p(θ|x1:N ,Σx,µθ,Σθ)

∝
( N∏

n=1

F (xn|θ,Σx)
)
G0(θ|µθ,Σθ)

∝ exp

{
−1

2

( N∑
n=1

(xn − θ)TΣ−1
x (xn − θ) + (θ − µθ)TΣ−1

θ (θ − µθ)
)}

= exp

{
−1

2

( N∑
n=1

xT
n Σ−1

x xn − 2
N∑

n=1

xT
n Σ−1

x θ +NθTΣ−1
x θ

+ θTΣ−1
θ θ − 2µT

θ Σ−1
θ θ + µT

θ Σ−1
θ µθ

)}

∝ exp

{
−1

2
θT (NΣ−1

x + Σ−1
θ )θ +

N∑
n=1

xT
n Σ−1

x θ + µT
θ Σ−1

θ θ

}

= exp

{
−1

2
θT (NΣ−1

x + Σ−1
θ )θ +

( N∑
n=1

xT
n Σ−1

x + µT
θ Σ−1

θ

)
θ

}
.

In the computations above we made use of the fact, that µT
θ Σ−1

θ µθ and
∑N

n=1 xT
n Σ−1

x xn

are constant and we can thus neglect them. By comparison with (2.1) we can rewrite
the expression on the last line to reveal the Gaussian distribution of the posterior,

p(θ|x1:N ,µθ,Σx,Σθ) =
1

ZN (Σ̄)
exp

{
−1

2
(θ − µ̄)T Σ̄−1(θ − µ̄)

}
, (2.5)

where
Σ̄ := (NΣ−1

x + Σ−1
θ )−1,

µ̄ := Σ̄(NΣ−1
x x̂ + Σ−1

θ µθ),

x̂ :=
1
N

N∑
n=1

xn.

A second quantity that will be of interest in later chapters is the evidence, i.e.∫
Ωθ

F (x|θ,Σx)G0(θ|µθ,Σθ) dθ.

In the general non-conjugate case, the integral shown above is often intractable to com-
pute, however for conjugate priors it is analytically solvable. Below we derive the solution
for the Gaussian/Gaussian case. One important thing to realize, is that Bayes’ Theorem
allows us to rewrite the integral as follows,∫

Ωθ

F (x|θ,Σx)G0(θ|µθ,Σθ) dθ =
F (x|θ,Σx)G0(θ|µθ,Σθ)

p(θ|x,Σx,µθ,Σθ)
.
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Although one can’t see it directly from the equation above, this expression is independent
of θ.

F (x|θ,Σx)G0(θ|µθ,Σθ)
p(θ|x,Σx,µθ,Σθ)

= Z exp

{
−1

2

(
(x− θ)TΣ−1

x (x− θ)

+ (θ − µθ)TΣ−1
θ (θ − µθ)− (θ − µ̄)T Σ̄−1(θ − µ̄)

)}

= Z exp

{
−1

2
xTΣ−1

x x + θTΣ−1
x x− 1

2
θTΣ−1

x θ − 1
2
θTΣ−1

θ θ + θTΣ−1
θ µθ

− 1
2
µT

θ Σ−1
θ µθ +

1
2
θT Σ̄−1θ − θT Σ̄−1µ̄ +

1
2
µ̄T Σ̄−1µ̄

}

= Z exp

{
−1

2
xTΣ−1

x x + θTΣ−1
x x + θTΣ−1

θ µθ

− 1
2
µT

θ Σ−1
θ µθ − θT Σ̄−1µ̄ +

1
2
µ̄T Σ̄−1µ̄

}

= Z exp

{
−1

2
xTΣ−1

x x− 1
2
µT

θ Σ−1
θ µθ +

1
2
µ̄T Σ̄−1µ̄

+ θT

(
Σ−1

x x + Σ−1
θ µθ − Σ̄−1Σ̄(Σ−1

x x + Σ−1
θ µθ)

)}

= Z exp

{
−1

2
xTΣ−1

x x− 1
2
µT

θ Σ−1
θ µθ +

1
2
µ̄T Σ̄−1µ̄

}
.

Where we introduced Z := ZN (Σ̄)/(ZN (Σx)ZN (Σθ)) to simplify the equations. The
terms that got dropped from the second to the third equation are equal to zero:

−1
2
θTΣ−1

x θ − 1
2
θTΣ−1

θ θ +
1
2
θT Σ̄−1θ =

1
2

(
−θT (Σ−1

x + Σ−1
θ )θ + θT Σ̄−1θ

)
= 0.

2.3.2 Multinomial/Dirichlet

Here we assume a Dirichlet prior

G0(θ|α) =
Γ(α0)

Γ(α1) . . .Γ(αK)

K∏
k=1

θαk−1
k ,
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2.3 Conjugate Priors

and a Multinomial likelihood (for K different bins)

F (x1:N |θ) =
M1!

x11! · · ·x1K !
· · · MN !

xN1! · · ·xNK !︸ ︷︷ ︸
=:Z

K∏
k=1

θx̂k
k .

Where as before in the section about the Multinomial distribution, xnk represents the
number of times bin k occurs in the data sample xn, furthermore we introduced x̂k =∑N

n=1 xnk and let M̂ denote the total number of draws, i.e. M̂ =
∑K

k=1 x̂k. Then the
posterior has again the form of a Dirichlet distribution:

p(θ|x1:N ,α) ∝
( N∏

n=1

F (xn|θ)
)
G0(θ|α)

= Z
Γ(α0)

Γ(α1) · · ·Γ(αK)

K∏
k=1

θαk+x̂k−1
k

We can determine the correct normalization coefficient by comparison with (2.3) to
get

p(θ|x1:N ,α) =
Γ(α0 + M̂)

Γ(α1 + x̂1) · · ·Γ(αK + x̂K)

K∏
k=1

θαk+x̂k−1
k

As before for the Gaussian, we are also interested in the evidence. We can use the
Bayes’ trick to compute it:

F (x|θ)G0(θ|α)
p(θ|x,α)

=
M !

x1!x2!···xK !

∏K
k=1 θ

xk
k

Γ(α0)
Γ(α1)···Γ(αK)

∏K
k=1 θ

αk−1
k

Γ(α0+M)
Γ(α1+x1)···Γ(αK+xK)

∏K
k=1 θ

αk+xk−1
k

=
Γ(M + 1)Γ(α0)

∏K
k=1 Γ(αk + xk)

Γ(α0 +M)
∏K

k=1 Γ(xk + 1)
∏K

k=1 Γ(αk)
.

A direct computer implementation (with fixed precision arithmetic) of the formula
above would however result in an overflow even for quite small problems. A good trick
to work around this issue, is to compute the logarithm of the evidence: this transforms
all of the products into sums and the division becomes a subtraction, moreover the log of
the Gamma function is implemented in many software packages and is much less likely
to overflow than the Gamma function. In the end we have to exponentiate the result
again.

2.3.3 Exponential Family

Suppose that both the likelihood and the prior are members of the exponential family.
What is required for them to be conjugate? Assuming we observe N data points x1:N ,
all being distributed according to the likelihood

F (xn|θ) = h(xn) exp
{
〈θ, s(xn)〉 − a(θ)

}
,
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then the prior has to have the following form:

G0(θ|λ, χ) =
1

Z(λ, χ)
exp

{
χ〈λ,θ〉 − χa(θ)

}
.

Note, that a(· ) in the exponent of the prior is not used as the log partition function,
but instead Z(λ, χ) is the partition function. Also, χ > 0 has to hold. The posterior
then has the form (where we’ve dropped the normalization constants

∏N
n=1 h(xn) and

1/Z(λ, χ)),

p(θ|x1:N ,λ, χ) ∝ exp

{
〈θ,

N∑
n=1

s(xn) + χλ〉 − a(θ)(N + χ)

}
.

Like this it becomes evident, that χ can be seen as a prior belief, measuring our belief
in the prior λ. In this report we use the convention of multiplying the prior belief χ into
the natural parameters, to get a posterior of the form

p(θ|x1:N ,λ, χ) ∝ exp

{
〈θ,

N∑
n=1

s(xn) + λ〉 − a(θ)(N + χ)

}
,

where λ is now already appropriately scaled.

Gaussian/Gaussian

Expressing the Gaussian distribution as a member of the exponential family that is
conjugate to another Gaussian distribution is slightly more involved than for the Dirich-
let/Multinomial case; thus we list the computations here. Assuming a Gaussian prior
(with mean µθ and covariance Σθ and where we denote the parameter θ from subsec-
tion 2.3.1 as µ, as we want to use θ for the exponential family representation):

p(µ|µθ,Σθ) =
1

ZN (Σθ)
exp

{
−1

2
µTΣ−1

θ µ + µTΣ−1
θ µθ −

1
2
µT

θ Σ−1
θ µθ

}
=

1
ZN (Σθ)

exp
{
−1

2
µT

θ Σ−1
θ µθ

}
︸ ︷︷ ︸

:=Z1(µθ,Σθ)

exp
{

µTΣ−1
θ µθ −

1
2
µTΣ−1

θ µ

}
,

and a Gaussian likelihood (with mean µ and covariance Σx):

p(x|µ,Σx) =
1

ZN (Σx)
exp

{
−1

2
xTΣ−1

x x

}
︸ ︷︷ ︸

:=Z2(x,Σx)

exp
{

xTΣ−1
x µ− 1

2
µTΣ−1

x µ

}
.

We can represent this as an exponential family distribution by introducing

λ = [Σ−1
θ µθ,Σ−1

θ ]

16



2.4 Clustering and model order selection

as the natural parameters of the prior and

θ = [µ,−1
2
µµT ]

as the sufficient statistics. Then the prior can be written as

p(θ|λ) = Z1(λ) exp{〈λ,θ〉}, (2.6)

with

Z1(λ) =
exp(−1

2λT
1 λ−1

2 λ1)
(2π)d/2 det(λ−1

2 )1/2
.

We can now introduce the sufficient statistics of the likelihood

x = [Σ−1
x x,Σ−1

x ],

and the likelihood can then be written as

p(x|θ) = Z2(x) exp{〈θ,x〉}

with

Z2(x) =
exp(−1

2xT
1 x−1

2 x1)
(2π)d/2 det(x−1

2 )1/2
.

2.4 Clustering and model order selection

In this section we discuss some of the classic clustering algorithms, such as Gaussian
Mixture Model (GMM), Asymmetric Clustering Model (ACM) and the maximum-a-
posteriori (MAP) versions thereof. These are all instances of a general class of algorithms
called Expectation-Maximization methods. In the second part we then also discuss some
traditional methods for inferring the number of clusters inherent in our data, this is
usually referred to as model order selection (MOS).

2.4.1 Finite Mixture Model

A finite probability mixture model is characterized by a likelihood F (· ), the number
of distributions NC , the mixing weights π (a probability vector of length NC) and the
components for each of the distributions Θ = {θ∗k}

NC
k=1. The probability density function

is then a weighted combination of these different distributions:

p(x|π,Θ) =
NC∑
k=1

πkF (x|θ∗k).

This model can be expressed as a graphical model as shown in Figure 2.4.
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N

xn

zn

π

Θ

Figure 2.4: A finite mixture model as a graphical model; zn denotes the cluster assign-
ment of sample xn.

2.4.2 Expectation-Maximization

The expectation maximization algorithm, or EM algorithm, is a general technique for
finding maximum likelihood solutions for probabilistic models having latent variables
[Dempster et al., 1977]. For a general in-depth study, see for example [Bishop, 2007],
section 9.4. We here mainly cover two special cases of the EM algorithm, which we
will use later on in our experiments: the Gaussian mixture model and the asymmetric
clustering model. The EM algorithm is also important because it is related to the
variational inference framework discussed in section 2.5.

Gaussian Mixture Model (GMM)

For Gaussian data we assume that the hyperparameters of the prior (µθ and Σθ) and
likelihood (Σx) are known, which is of course an unlikely assumption for real world
data, but as we are mainly interested in comparing different MOS models and clustering
algorithms we feel that this a sensible choice. We thus only need to estimate the means
of the clusters in the GMM clustering algorithm, in the general case one usually also
estimates the covariance matrix for each cluster.

1. Initialize the means µk and mixing coefficients πk (k = 1, . . . , NC) and evaluate
the initial value of the log likelihood.

2. E step. Evaluate the responsibilities using the current parameter values

qn,k =
πkN (xn|µk,Σx)∑NC
i=1 πiN (xn|µi,Σx)

.
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3. M step. Re-estimate the parameters using the current responsibilities

µk =
1
Nk

N∑
n=1

qn,kxn

πk =
Nk

N

where

Nk =
N∑

n=1

qn,k.

4. Evaluate the log likelihood

ln p(X|{µ}NC
k=1,Σx,π) =

N∑
n=1

ln
{NC∑

k=1

πkN (xn|µk,Σx)
}

and check for convergence of either the parameters or the log likelihood. If the
convergence criterion is not satisfied return to step 2.

For incorporating the prior information we need to adapt the M step as follows:

Σk = (NkΣ−1
x + Σ−1

θ )−1

µk = Σk(NkΣ−1
x x̂k + Σ−1

θ µθ)

where

x̂k :=
1
N

N∑
n=1

qn,kxn.

Note that the common covariance gets replaced by a per cluster covariance matrix Σk.
For more explanations about the computation of the posterior, see subsection 2.3.1.

Asymmetric Clustering Model (ACM)

We use the ACM [Puzicha et al., 1999] algorithm for clustering histogram data, this
algorithm is an instance of an EM algorithm and works as shown below. However in our
experiments we used a MAP version of this algorithm with a Dirichlet prior to better
compare it to other methods that assume a prior.

1. E step. Reestimate the responsibilities of histogram xn belonging to cluster k:

qn,k =
πkMult(xn|µk)∑NC
i=1 πiMult(xn|µi)

where Mult(x|µ) denotes the Multinomial distribution with factor µ.
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2. M step. Reestimate the parameters:

πk =
∑N

n=1 qn,k∑NC
k=1

∑N
n=1 qn,k

and

µk =
∑N

n=1 qn,kxn∑N
n=1 qn,k

.

For a MAP version of this algorithm we have to add a prior term, given by the α
parameter of the Dirichlet distribution to the reestimation of the µk parameters,

µk =
∑N

n=1 qn,kxn + α∑N
n=1 qn,k + α0

.

2.4.3 Model order selection

Given two clusterings of the data x1, . . . ,xN with different number of clusters (for the
same parametric form), which one is preferable? This is the question that lies at the
heart of every model order selection strategy. While the Dirichlet process opts for a local
criterion, in splitting the model for the n-th data point with a probability of α/(α+n−1),
traditional methods, such as the Akaike information criterion (AIC) [Akaike, 1974] and
the Bayesian information criterion (BIC) [Schwarz, 1978], introduce a global criterion.
The two scores for a given model order NC are given by

AICNC
(x1, . . . ,xN |{θ∗k}

NC
k=1,π) := − ln `NC

(x1, . . . ,xN |{θ∗k}
NC
k=1,π) + κ(NC),

and

BICNC
(x1, . . . ,xN |{θ∗k}

NC
k=1,π) := − ln `NC

(x1, . . . ,xN |{θ∗k}
NC
k=1,π) +

1
2
κ(NC) lnN.

Where {θ∗k}
NC
k=1 denotes all the latent factors, e.g. the Gaussian mean for every cluster.

κ(NC) denotes the number of free parameters in our model and ` denotes the likelihood.
We then want to find the model that leads to the minimal score. The BIC can be
motivated as a Laplace approximation to the model evidence given by

p(x1, . . . ,xN |NC) =
∫

ΩΘ

p(x1, . . . ,xN |Θ, NC)p(Θ|NC) dΘ.

Where we collected all latent factors in Θ. For more information see e.g. section 4.4.1
in [Bishop, 2007]. In practice we assume we are given a lower and upper bound on the
number of clusters and compute in a brute-force manner the score for every model order
within the bound and in the end choose the clustering leading to the smallest score. We
will come back to these information theoretic MOS strategies in section 4.1. It should
be pointed out, that there exist other MOS approaches, such as stability [Lange et al.,
2003] or minimum description length (MDL), which we will however not consider here.
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2.5 Graphical Models and Probabilistic Inference

Graphical models are a standard tool to express dependencies and independencies of
distributions. The topic is closely related to probabilistic inference, as normally what we
are ultimately interested in, is finding a MAP estimate (or sometimes also marginals) for
a given model and observations. In this section we give a very short, high-level overview
of the concepts, for an in-depth discussion, see for example [Bishop, 2007, Jordan et al.,
1999, Wainwright and Jordan, 2003].

2.5.1 Graphical Models

A graphical model is a graph, where each node has a random variable associated with
it. The edges in this graph correspond to probabilistic dependencies of the random
variables. Depending on the context, it is advantageous to either consider directed or
undirected edges. In this thesis we will only consider directed graphical models (Bayesian
networks), which is especially useful, if we think about the probabilities in a generative
fashion, i.e. a variable can be expressed as a conditional probability, conditioned on
other random variables. On the other hand, directed models (Markov random fields,
conditional random fields) are important if we like to think about our problem in terms
of energy minimization and/or factorization of the distribution into cliques.

2.5.2 Probabilistic inference in general

As exact inference for general graphical models is intractable, one usually considers
approximations. These methods include belief propagation [Yedidia et al., 2000], varia-
tional inference [Jordan et al., 1999], sampling approaches [Neal, 1993], reparametriza-
tions of the distribution [Wainwright et al., 2003] or graph-cut algorithms [Boykov et al.,
2001]. In this thesis we only dealt with Gibbs sampling and variational inference and
we thus restrict the discussion to these two approaches.

Gibbs sampling

Gibbs sampling is a rather simple Markov chain Monte Carlo algorithm. Assume we
consider a distribution p(z) = p(z1, . . . , zM ) from which we wish to sample. Assume
further, that we’ve chosen some initial configuration for the variables z1, . . . , zM . Each
step of the Gibbs sampler consists of drawing a new value for zi based on the remaining
values z−i (which denotes z1, . . . , zM with zi omitted). We repeat this step for i =
1, . . . ,M or for some other (possibly random) order.

Variational inference

This part is taken from [Blei and Jordan, 2005]. Let’s assume we are considering a model
with hyperparameters ϑ, latent variables W = {w1, . . . ,wM}, and observations X. The
posterior distribution of the latent variables is:

p(W |X,ϑ) = exp{ln p(X,W |ϑ)− ln p(X|ϑ)}.
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The log marginal probability of the data, needed to ensure the normalization of the
distribution, is:

ln p(X|ϑ) = ln
∫
p(W ,X|ϑ) dW ,

which may be difficult to compute. Variational inference is based on reformulating
the computation of the posterior distribution as an optimization problem, perturbing
that problem and finding solutions to the perturbed problem. In this thesis we will only
consider mean-field methods where we consider a family of distributions qν(W ), indexed
by a variational parameter ν. We aim to minimize the KL-divergence between qν and
p(W |X,ϑ):

D(qν(W )‖p(W |,X,ϑ)) = Eq[ln qν(W )]− Eq[ln p(W ,X|ϑ)] + ln p(X|ϑ),

where the problematic normalization constant does now not depend on the variational
parameters and can thus be ignored for the optimization. We can alternatively also state
the minimization problem above as a maximization of a lower bound on the log marginal
likelihood:

ln p(X|ϑ) ≥ Eq[ln p(W ,X|ϑ)]− Eq[ln qν(W )]. (2.7)

For the optimization problem to be computationally tractable, we normally consider
distributions qν(W ) where we broke some of the dependencies. We now consider such a
family of distributions for exponential families. For each latent variable, let us assume
that the conditional distribution p(wi|W−i,X,ϑ) is a member of the exponential family:

p(wi|W−i,X,ϑ) = h(wi) exp{gi(W−i,X,ϑ)Twi − a(gi(W−i,X,ϑ))},

where gi(W−i,X,ϑ) is the natural parameter for wi, when conditioning on the remain-
ing variables and the observations.

For this setting Ghahramani and Beal [2001] propose to use the following family of
distributions as mean-field variational approximations:

qν(W ) =
M∏
i=1

exp{ηT
i wi − a(wi),

where ν = {η1, . . . ,ηM}. The optimization of the KL divergence with respect to a single
variational parameter νi, is achieved by computing the following expectation:

ηi = Eq[gi(W−i,X,ϑ)]. (2.8)

2.6 The Dirichlet Process

In this section we introduce the Dirichlet process (DP) [Ferguson, 1973], which proposed
back in the seventies, has become popular as a flexible clustering method only recently.
We start by introducing the Dirichlet process as an abstract definition and afterwards
show some of its properties, which arguably are more important and give more insights,
than the definition itself.
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2.6 The Dirichlet Process

Definition 2.14 (Dirichlet process). Let (Ω,A) be a measurable space, with G0 a prob-
ability measure on the space, and let α be a positive real number. The Dirichlet process
is the distribution of a random probability measure G over (Ω,A) such that, for any
finite partition (A1, . . . , Ak) of Ω, the random vector (G(A1), . . . , G(Ak)) is distributed
as a finite-dimensional Dirichlet distribution:

(G(A1), . . . , G(Ak)) ∼ Dir(αG0(A1), . . . , αG0(Ak)).

We write G ∼ DP(α,G0) if G is a random probability measure distributed according to
the Dirichlet process. We call G0 the base measure of G and call α the concentration
parameter .

We will often work with generative models in the DP setting, this usually boils down
to: sample a distribution G from a Dirichlet process DP(α,G0) and afterwards sample
N data points θ1, . . . ,θN from G. This process is usually denoted as follows:

G ∼ DP(α,G0)
θ1, . . . ,θN ∼ G.

(2.9)

Which is illustrated as a directed graphical model in Figure 2.5.

N

θn

G

α G0

Figure 2.5: The Dirichlet process as a directed graphical model.

The Dirichlet process was specifically designed such that it allows for an efficient
posterior update and as already proven in [Ferguson, 1973], the posterior process is
again a Dirichlet process:

G |θ1, . . . ,θN ∼ DP(α,G0 +
N∑

n=1

δθn).

Where δθn is a Dirac measure centered at θn.
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2 Background

2.6.1 Stick-breaking construction and discreteness of the Dirichlet process

Measures G drawn from the Dirichlet Process as given in Definition 2.14 are discrete
with probability one. This becomes most evident in the stick-breaking construction due
to Sethuraman [1994]. Before formally introducing the stick-breaking construction we
give an illustrating way to think about this representation which also led to its name.
Let’s assume we are given a stick of unit length and we break it into two pieces according
to a Beta(1, α) distribution, let’s denote the length of the resulting first part as π1. We
repeat this infinitely often with the remaining part and successively denote them as
π2, π3, . . .; this process is illustrated in Figure 2.6.

π1

π2

π3

π4
...

Figure 2.6: Breaking a stick infinitely often leads to the correct probability distribution
for the cluster assignments.

These “stick lengths” are important for the construction given by Sethuraman [1994],
which gives an explicit formulation of the Dirichlet process:

vk ∼ Beta(1, α)
θ∗k ∼ G0

πk(v) = vk

k−1∏
i=1

(1− vi)

G =
∞∑

k=1

πk(v)δθ∗k .

(2.10)

This representation makes clear that the distribution G from the DP is discrete with
probability one; the support of G consists of a countably infinite set of atoms {θ∗k}∞k=1,
drawn independently from G0. We here and later on use the convention of denoting
distinct values by θ∗, the difference between θ and θ∗ should become obvious in the
next subsection.

2.6.2 Sampling from a Dirichlet process and the Pólya urn scheme

Instead of giving an explicit representation of G, as done in the previous subsection, one
might be interested in the draws of the DP, as this would then allow us to sample from
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2.6 The Dirichlet Process

G. The Pólya urn scheme [Blackwell and MacQueen, 1973] answers this question and
shows also that the draws are discrete and exhibit a clustering effect.

Let θ1,θ2, . . . be a sequence of i.i.d. random variables distributed according to G. That
is the variables θ1,θ2, . . . are conditionally independent givenG, and hence exchangeable.
Let us consider the successive conditional distributions of θn+1 given θ1, . . . ,θn, where G
has been integrated out. Blackwell and MacQueen [1973] showed that these conditional
distributions have the following form:

θn+1 |θ1, . . . ,θn ∼
n

α+ n

n∑
i=1

δθi
(θn+1) +

α

α+ n
G0(θn+1). (2.11)

We can interpret the conditional distributions in terms of a simple urn model in which
a ball of a distinct color is associated with each atom. The balls are drawn equiprobably;
when a ball is drawn it is placed back in the urn together with another ball of the same
color. In addition, with probability proportional to α a new atom is created by drawing
from G0 and a ball of a new color is added to the urn.

Equation (2.11) shows that θn+1 has positive probability of being equal to one of the
previous draws. Moreover, there is a positive reinforcement effect; the more often a
point is drawn, the more likely it is to be drawn in the future. To make the clustering
property explicit, it is helpful to introduce a new set of variables that represent distinct
values of the atoms. Define θ∗1, . . . ,θ

∗
NC

to be the distinct values taken on by θ1, . . . ,θn,
and let mk for 1 ≤ k ≤ NC be the number of values that are equal to θk. We can
re-express (2.11) as

θn+1 |θ1, . . . ,θn ∼
n

α+ n

NC∑
k=1

mkδθ∗k(θn+1) +
α

α+ n
G0(θn+1).

Sometimes the Pólya urn scheme is described as the Chinese restaurant process (CRP).
The name stems from the following process: Consider a Chinese restaurant with an un-
bounded number of tables (corresponding to the θ∗k in the DP). The n-th customer
(corresponding to θn in the DP) sits at the table indexed by θ∗k with probability pro-
portional to the number mk of guests already seated at this table, i.e. θn = θ∗k. With
probability proportional to α he sits at a table not yet occupied.

2.6.3 Dirichlet process mixture model

One of the most important applications of the Dirichlet process is as a nonparametric
prior on the parameters of a mixture model. It allows us to describe mixture models
where the number of mixtures isn’t predefined by the researcher, but can float and adapt
to the problem at hands; however the selection isn’t completely automatically, as it’s
controlled by the parameter α. Suppose that observations xn arise as follows:

G ∼ DP(α,G0)
θn |G ∼ G(θn)

xn |θn ∼ F (xn|θn).
(2.12)
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2 Background

This model is referred to as the Dirichlet process mixture model (MDP) [Antoniak,
1974] and is depicted as a graphical model in Figure 2.7. As can be seen from the graph-
ical model, the factors θn are conditionally independent given G, and the observation
xn is conditionally independent of the other observations given the factor θn.

N

xn

θn

G

α G0

Figure 2.7: The Dirichlet process mixture model as a directed graphical model.

The stick-breaking representation can also be used for the Dirichlet process mixture,
by adding an indicator variable zi for each observation, which links an observation xn

with a factor θ∗k and is distributed according to π. Let zn be an assignment variable of
the factor θ∗k with which the data point xn is associated. The data x1:N can be described
as arising from the following process:

1. Draw vk |α ∼ Beta(1, α), k = 1, 2, . . .

2. Draw θ∗k |λ ∼ G0(λ), k = 1, 2, . . .

3. For the n-th data point:

a) Draw zn |π(v) ∼ Mult(zn|π(v), 1).

b) Draw xn | zn ∼ F (xn|θ∗zn
).

The distribution of xn conditional on zn and {θ∗k}∞k=1 is

p(xn|zn, {θ∗k}∞k=1) =
∞∏

k=1

(
h(xn) exp{〈θ∗k,xn〉 − a(θ∗k)}

)1[zn=k]

where a(θ∗k) is the appropriate cumulant function and we assume for simplicity that xn

is the sufficient statistic for the natural parameter θ∗, i.e. xn = s(xn). Here we assumed
that the likelihood is a member of the exponential family.
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N ∞

xn

zn

θ∗k

vk α

λ

Figure 2.8: Graphical model representation of an exponential family Dirichlet process
mixture in the stick-breaking construction.

2.6.4 The infinite limit of finite mixture models

A Dirichlet process mixture model can be derived as the limit of a sequence of finite
mixture models, where the number of mixture components is taken to infinity.

π ∼ Dir(α/NC , . . . , α/NC)
θ∗k ∼ G0(λ)

zn |π ∼ Mult(zn|π, 1)

xn | zn, {θ∗k}
NC
k=1 ∼ F (xn|θ∗zn

).

(2.13)

By integrating over the mixing proportions, πk, we can write the prior for zn+1 as the
conditional probabilities of the following form:

P (zn+1 = k|z1, . . . , zn) =
mn,k + α/NC

n+ α
. (2.14)

2.6.5 Expected number of clusters

In this section we give some insights into the expected number of clusters for a Dirichlet
process. Formally, we are interested in E[NC |N,α], where NC is the number of clusters,
N is the number of samples and α is the concentration parameter of the Dirichlet process.
We use the definition of the expectation and the fact that we create at outmost N
clusters:

E[NC |N,α] =
N∑

k=1

P (NC = k|N,α)k.

The probability P (NC = k|N,α) can then be computed by recursion:

P (NC = k|N,α) = P (NC = k|N − 1, α)
N − 1

N − 1 + α

+P (NC = k − 1|N − 1, α)
α

N − 1 + α
.
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with
P (NC = 1|N,α) =

1
α+ 1

· · · N − 1
α+N − 1

=
Γ(α+ 1)Γ(N)

Γ(α+N)

and P (NC = k|N,α) = 0 for k > N . In Figure 2.9 we show the probability distribution
function for smaller values of N .
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Figure 2.9: Probability distribution function of the number of clusters for α = 1.5.

In Figure 2.10 we show the expected number of clusters for increasing N .
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Figure 2.10: Expected number of clusters for increasing size of the data set.

In [West, 1992] one can find more results about the concentration parameter α of the
DP and its relation to the number of clusters. One particularly interesting result, is that
NC = O(lnN), i.e. the number of clusters grows in asymptotics logarithmically with the
number of samples.
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3 Inference for the Dirichlet Process

I was just guessing. At numbers and figures.
Pulling your puzzles apart.

(Coldplay in ‘The Scientist’)

One can divide probabilistic inference algorithms for the Dirichlet Process broadly into
two classes: sampling methods and variational optimization algorithms. Many of these
methods have their roots in the statistical physics community and were for example
originally used for finding solutions of the Ising model. As with most inference tasks,
inference for the Dirichlet process mixture model is computationally expensive and the
research focus has recently turned to finding efficient approximation algorithms. While
the sampling algorithms have the theoretically appealing property that if run for an
infinite amount of time, one would get the exact solution; variational methods generally
don’t have this property. However practically there’s no big difference as the sampling
algorithms are stopped after a certain number of iterations, and thus won’t neither con-
verge to the exact solution. The variational algorithms are especially promising, as they
run in general much faster than sampling approaches. In this chapter we recapitulate
some of the most important algorithms in use today.

3.1 Gibbs Sampling when Conjugate Priors are used

Most of this section is bluntly copied from the excellent article [Neal, 1998], as I felt
there is no way to surpass the concise explanations.

The most direct approach to sampling for model (2.12) is to repeatedly draw values
for each θn from its conditional distribution given both the data and the θi for i 6= n
(written as θ−n). This conditional is obtained by combining the likelihood, written
F (xn|θn), and the prior conditional on θ−n, which is

θn |θ−n ∼
1

N − 1 + α

∑
i6=n

δθi
(θn) +

α

N − 1 + α
G0(θn).

This can be derived from (2.11) by imaging that n is the last observation, as we may,
since the observations are exchangeable. When combined with the likelihood, this yields
the following conditional distribution for use in Gibbs sampling:

θn |θ−n,xn ∼
∑
i6=n

qn,iδθi
(θn) + rnp(θn|xn). (3.1)
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3 Inference for the Dirichlet Process

Here, p(θn|xn) is the posterior distribution for θn based on the prior G0(θn) and the
single observation xn, with likelihood F (xn|θ). The values of the qn,i and of rn are
defined as

qn,i = bF (xn|θi)

rn = bα

∫
Ωθ

F (xn|θ)G0(θ) dθ ,

where b is such that
∑

i6=n qn,i + rn = 1. For this Gibbs sampling method to be feasible,
computing the integral defining rn and sampling from p(θn|xn) must be feasible opera-
tions. This will generally be so when G0 is the conjugate prior for the likelihood given
by F . We summarize this method in Algorithm 3.1.

Algorithm 3.1: Single assignment Gibbs sampler.
Let the state of the Markov chain consist of θ1, . . . ,θN ;
while not converged do

for n = 1, . . . , N do
Draw a new value from θn |θ−n,xn as defined by equation (3.1);

end
end

This algorithm is used by Escobar [1994] and Escobar and West [1995]. It produces an
ergodic Markov chain, but convergence to the posterior distribution may be rather slow,
and sampling thereafter may be inefficient. The problem is that there are often groups
of observations that with high probability are associated with the same θ. Since the
algorithm cannot change the θ for more than one observation simultaneously, changes
to the θ values for observations in such a group can occur only rarely, as they require
passage through a low-probability intermediate state in which observations in the group
do not all have the same θ value.

This problem is avoided if Gibbs sampling is instead applied to the model formulated
as in (2.13), with the mixing proportions, πk, integrated out. When NC is finite, each
Gibbs sampling scan consists of picking a new value for each zn from its conditional
distribution given xn, the {θ∗k}

NC
k=1, and the zi for i 6= n (written as z−n), and then

picking a new value for each θ∗k from its conditional distribution given the xn for which
zn = k. The required conditional probabilities for zn can easily be computed:

P (zn = k|z−n,xn,θ
∗) = bF (xn|θ∗k)

m−n,k + α/NC

N − 1 + α
,

where m−n,k is the number of zi for i 6= n that are equal to k, and b is the appropriate
normalizing constant. The last factor is derived from (2.14) by imaging that n is the
last observation. (Note that the denominator N − 1 + α could be absorbed into b, but
here and later it is retained for clarity.) The conditional distribution for θ∗k will also
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3.1 Gibbs Sampling when Conjugate Priors are used

be easy to sample from when the priors used are conjugate, and even when Gibbs sam-
pling for θ∗k is difficult, one may simply substitute some other update that leaves the
required distribution invariant. Note that when a new value is chosen for θ∗, the values
of θn = θ∗zn

will change simultaneously for all observations associated with component k.

WhenNC goes to infinity, we cannot, of course, explicitly represent the infinite number
of θ∗k. We instead represent, and do Gibbs sampling for, only those θ∗k that are currently
associated with some observation. Gibbs sampling for the zn is based on the following
conditional probabilities (with θ∗ here being the set of θ∗k currently associated with at
least one observation):

If k = zi for some i 6= n : P (zn = k|z−n,xn,θ
∗) = b

m−n,k

N − 1 + α
F (xn|θ∗k)

P (zn 6= zi for all i 6= n|z−n,xn,θ
∗) = b

α

N − 1 + α

∫
Ωθ∗

F (xn|θ∗)G0(θ∗) dθ∗

(3.2)
Here, b is the appropriate normalizing constant that makes the above probabilities sum

to one. The numerical values of the zi are arbitrary, as long as they faithfully represent
whether or not zn = zi; they may be chosen for programming convenience, or to facilitate
the display of mixture components in some desired order. When Gibbs sampling for zn
chooses a value not equal to any other zi, a value for θ∗k is chosen from p(θ∗|xn), the
posterior distribution of θ∗ based on the prior G0 and the single observation xn. We
summarize this second Gibbs sampling method in Algorithm 3.2.

Algorithm 3.2: Simultaneous Gibbs sampler.
Let the state of the Markov chain consist of z1, . . . , zN and θ∗1, . . . ,θ

∗
NC

;
while not converged do

for n = 1, . . . , N do
if m−n,zn = 0 then

remove θ∗zn
from the state;

end
Draw a new value for zn from zn | z−n,xn,θ

∗ as defined by equation (3.2);
if zn not associated with any other observation then

Draw a value from p(θ∗|xn) and add it to the state;
end

end
forall k ∈ {z1, . . . , zN} do

Draw a new value from θ∗k |xn s.t. zn = k;
end

end

This is essentially the method used by Bush and MacEachern [1996] and by West et al.
[1994]. As was the case for the first Gibbs sampling method, this approach is feasible if
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3 Inference for the Dirichlet Process

we can compute
∫
Ωθ∗

F (xn|θ∗)G0(θ∗) dθ∗ and sample from p(θ∗|xn), as will generally
be the case when G0 is the conjugate prior.

Finally, in a conjugate context, we can often integrate analytically over the θ∗k, elimi-
nating them from the algorithm. The state of the Markov chain then consists only of the
zn, which we update by Gibbs sampling using the following conditional probabilities:

If k = zi for some i 6= n : P (zn = k|z−n,xn) = b
m−n,k

N − 1 + α

∫
Ωθ∗

F (xn|θ∗)p−n,k(θ∗) dθ∗

P (zn 6= zi for all i 6= j|z−n,xn) = b
α

N − 1 + α

∫
Ωθ∗

F (xn|θ∗)G0(θ∗) dθ∗

(3.3)
Here, p−n,k is the posterior distribution of θ∗ based on the priorG0 and all observations

xi for which i 6= n and zn = k. This third Gibbs sampling method is summarized in
Algorithm 3.3.

Algorithm 3.3: Collapsed Gibbs sampler.
Let the state of the Markov chain consist of z1, . . . , zN ;
while not converged do

for n = 1, . . . , N do
Draw a new value for zn from zn | z−n,xn as defined by equation (3.3);

end
end

This algorithm is presented by MacEachern [1994] for mixtures of Gaussians and by
Neal [1991] for models of categorical data.

3.2 Variational Inference

For more than a decade sampling based algorithms have been the major cornerstone
for approximate inference in graphical models involving a Dirichlet process. However,
recently researchers introduced promising variational methods which vastly outperform
traditional Monte-Carlo algorithms in terms of running time on large-scale problems.
Variational inference methods come at a price: they are usually harder to implement
and might get stuck in local minima forever (and can thus in theory be quite poor ap-
proximations). The algorithm described here was first introduced by Blei and Jordan
[2005]. More recently researchers pointed out some deficiencies in the design and pro-
posed improved methods [Kurihara et al., 2007b,c], which they found to be also more
efficient.

The algorithm of Blei and Jordan [2005] is based on the stick-breaking construction
of the DP mixture (see subsection 2.6.1). As for all variational methods we use the
bound on the log marginal probability introduced in subsection 2.5.2. The latent vari-
ables in the stick breaking construction are the stick lengths, the cluster parameters
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and the cluster assignments: W = {v,Θ,z}, where v = {vk}∞k=1, Θ = {θ∗k}∞k=1 and
z = {zn}N

n=1. The hyperparameters are the concentration parameter of the DP and the
natural parameter of the conjugate base distribution: ϑ = {α,λ}.

Using the general equation (2.7) which we repeat here for clarity,

ln p(X|ϑ) ≥ Eq[ln p(W ,X|ϑ)]− Eq[ln qν(W )],

we can give a bound on the log marginal probability of the data, for a variational
distribution q:

ln p(X|α,λ) ≥ Eq[ln p(v|α)] + Eq[ln p(Θ|λ)]

+
N∑

n=1

(Eq[ln p(zn|v)] + Eq[ln p(xn|zn,Θ)])

−Eq[ln q(v,Θ,z)].

(3.4)

To exploit this bound one now needs to specify the variational distribution q which
approximates the distribution of the infinite-dimensional random measure G, which is
given by the infinite sets {vk}∞k=1 and {θ∗k}∞k=1. Blei and Jordan consider the truncated
stick-breaking representation, where instead of having an infinite number of sticks, one
fixes a value T and let q(vT = 1) = 1; this implies that the mixture proportions πk(v)
are equal to zero for k > T . They thus introduce the following family of variational
distributions for mean-field variational inference:

q(v,Θ,z) =
T−1∏
k=1

qγk
(vk)

T∏
k=1

qτk
(θ∗k)

N∏
n=1

qφn(zn)

Where (as can be seen from the graphical model in Figure 2.8) qγk
(vk) are Beta

distributions with parameters γk,1 and γk,2, qτk
(θ∗k) are exponential family distributions

with natural parameters τk corresponding to the base measurement of the DP, and
qφn(zn) are Multinomial distributions for T bins with probabilities {φn,k}T

k=1. In the
notation of section 2.5.2, the free variational parameters are

ν = {γ1, . . . ,γT−1, τ1, . . . , τT ,φ1, . . . ,φN}. (3.5)

Below we now compute all the expectations for a DP for Dirichlet/Multinomial and
Gaussian/Gaussian. These computations might be useful for other researchers trying to
implement variational methods and being somewhat puzzled by the many expectations
(as I was on the first sight). Others, who are not interested in a practical implementation
of the variational algorithm might want to skip it, as it is quite technical and doesn’t
lead to many insights; however the first expectation is non-standard and it might thus
be interesting to have a look at it.
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3.2.1 Bound on the log marginal probability of the data

In this subsection we simplify all the expectations of the form Eq[· ] in equation (3.4),
this will result in four computations needed to be carried out for each choice of prior
and likelihood separately: Eq[a(θ∗k)], Eq[θ∗k], Z1(λ, χ) and Z2(x); this is done for Dirich-
let/Multinomial and Gaussian/Gaussian. It should be pointed out, that most of these
computations are not really needed for optimizing the bound, but they allow us to keep
track of the progress.

Eq[ln p(zn|v)] = Eq

[
ln

( ∞∏
k=1

(1− vk)1[zn>k]v
1[zn=k]
k

)]

=
∞∑

k=1

q(zn > k)Eq[ln(1− vk)] + q(zn = k)Eq[ln vk].

Recall that Eq[ln(1− vT )] = 0 and q(zn > T ) = 0. Consequently, we can truncate this
summation at k = T :

Eq[ln p(zn|v)] =
T∑

k=1

q(zn > k)Eq[ln(1− vk)] + q(zn = k)Eq[ln vk],

where

q(zn = k) = φn,k

q(zn > k) =
T∑

i=k+1

φn,i

Eq[ln vk] = Ψ(γk,1)−Ψ(γk,1 + γk,2)
Eq[ln(1− vk)] = Ψ(γk,2)−Ψ(γk,1 + γk,2).

The digamma function, denoted by Ψ, arises from the derivative of the log normalization
factor in the Beta distribution.

Furthermore, we need to compute the following expectations

Eq[ln p(v|α)] =
T∑

k=1

Eq

[
ln

(
Γ(1 + α)
Γ(1)Γ(α)

v0
k(1− vk)α−1

)]

=
T∑

k=1

Eq

[
ln

(
Γ(1 + α)

Γ(α)

)
+ (α− 1) ln(1− vk)

]

=
T∑

k=1

(
ln(α) + (α− 1)Eq[ln(1− vk)]

)

=
T∑

k=1

(
ln(α) + (α− 1)(Ψ(γk,2)−Ψ(γk,1 + γk,2))

)
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Eq[ln q(v,Θ,z)] =
T−1∑
k=1

Eq[ln qγk
(vk)] +

T∑
k=1

Eq[ln qτk
(θ∗k)] +

N∑
n=1

Eq[ln qφn(zn)]

T−1∑
k=1

Eq[ln qγk
(vk)]

=
T−1∑
k=1

Eq

[
ln

(
Γ(γk,1 + γk,2)
Γ(γk,1)Γ(γk,2)

v
γk,1−1
k (1− vk)γk,2−1

)]

=
T−1∑
k=1

(
ln

(
Γ(γk,1 + γk,2)
Γ(γk,1)Γ(γk,2)

)
+ (γk,1 − 1)Eq[ln(vk)] + (γk,2 − 1)Eq[ln(1− vk)]

)

T∑
k=1

Eq[ln qτk
(θ∗k)] =

T∑
k=1

Eq

[
ln

(
1

Z1(τk,1, τk,2)
exp(〈τk,1,θ

∗
k〉 − τk,2a(θ∗k))

)]

=
T∑

k=1

(
− lnZ1(τk,1, τk,2) + 〈τk,1,Eq[θ∗k]〉 − τk,2Eq[a(θ∗k)]

)

N∑
n=1

Eq[ln qφn(zn)] =
N∑

n=1

Eq

[
ln

( T∏
k=1

φ
1[zn=k]
n,k

)]

=
N∑

n=1

T∑
k=1

q(zn = k) ln(φn,k)

=
N∑

n=1

T∑
k=1

φn,k ln(φn,k)

T∑
k=1

Eq[ln p(θ∗k|λ)] =
T∑

k=1

Eq

[
ln

(
1

Z1(λ, χ)
exp(〈λ,θ∗k〉 − χa(θ∗k))

)]

=
T∑

k=1

(
− ln(Z1(λ, χ)) + 〈λ,Eq[θ∗k]〉 − χEq[a(θ∗k)]

)

N∑
n=1

Eq[ln p(xn|zn,Θ)] =
N∑

n=1

T∑
k=1

q(zn = k)(− ln(Z2(xn)) + 〈Eq[θ∗k],xn〉 − Eq[a(θ∗k)])

For a specific choice of conjugate prior and likelihood one has thus to compute Z1(λ, χ),
Z2(x), Eq[θ∗k] and Eq[a(θ∗k)]. This is done below for two configurations: Dirichlet/Multi-
nomial and Gaussian/Gaussian. All the other computations are independent of the prior
and likelihood (provided they are conjugate and from the exponential family).
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3 Inference for the Dirichlet Process

Dirichlet/Multinomial

The expectation of the log partition function is zero,

Eq[a(θ∗k)] = 0.

For the expectation of the factors we introduce βk =
∑K

j=1 τk,1,j + K where K is the
number of bins, the expectation is then given by

Eq[θ∗k] = [Ψ(τk,1,1 + 1)−Ψ(βk), . . . ,Ψ(τk,1,K + 1)−Ψ(βk)]T .

Furthermore, the two normalization functions are given by

Z1(λ, χ) =
K∑

j=1

ln(Γ(λj + 1))− ln Γ
( K∑

j=1

λj +K

)
,

and
Z2(x) =

x1! · · ·xK !

(
∑K

j=1 xj)!
.

Gaussian/Gaussian

See page 16 for more information about the notation. The expectation of the log partition
function is zero, i.e.

Eq[a(θ∗k)] = 0,

as the log partition function is not present in equation (2.6). The expectation of the
factors is given by

Eq[θ∗k] = E
[
[µ,−1

2
µµT ]

]
= [µθ,−

1
2
(Σθ + µθµ

T
θ )]

where Σθ := τ−1
k,1,2 and µθ := Σθτk,1,1. Note that the χ factor cancels out in the com-

putation of µθ.

For computing the expectation Eq[θ∗k] we use the fact that the expectation of a Gaus-
sian is given by its mean, here denoted by µθ, and E[µµT ] can be computed from Σθ

and µθ by

Σθ = E[(µ− µT
θ )(µ− µθ)]

= E[µµT − 2µµT
θ + µθµ

T
θ ]

= E[µµT ]− 2E[µ]µT
θ + µθµ

T
θ

and thus E[µµT ] = Σθ + µθµ
T
θ .
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3.2 Variational Inference

The two normalization functions are given by

Z1(λ, χ) =
(2π)d/2 det(λ−1

2 )1/2

exp
(
−1

2λT
1 λ−1

2 λ1

) ,
and

Z2(x) =
(2π)d/2 det(x−1

2 )1/2

exp
(
−1

2xT
1 x−1

2 x1

) .
3.2.2 Coordinate ascent algorithm

Using the general expression in equation (2.8) we can derive a mean-field coordinate
ascent algorithm. This yields:

γk,1 = 1 +
N∑

n=1

φn,k

γk,2 = α+
N∑

n=1

T∑
i=k+1

φn,i

τk,1 = λ +
N∑

n=1

φn,kxn

τk,2 = χ+
N∑

n=1

φn,k

φn,k ∝ exp(Sn,k),

for k ∈ {1, . . . , T} and n ∈ {1, . . . , N}, where

Sn,k = Eq[ln vk] +
k−1∑
j=1

Eq[ln(1− vj)] + Eq[θ∗k]
Txn − Eq[a(θ∗k)].

Iterating these updates optimizes equation (3.4) with respect to the variational param-
eters defined in equation (3.5).
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3 Inference for the Dirichlet Process
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4 Comparative study of clustering methods

You made up your mind to leave it all behind.
Now you’re forced to fight it out.

(The Fray in ‘Fall Away’)

4.1 Theoretical comparison of the Dirichlet process mixture
and information theoretic MOS criteria

In this section we show that there’s theoretical evidence to believe that the Dirichlet
process and the information theoretic approaches, especially the BIC, are not that much
different after all. However, as we will see in section 4.2 this is only valid up to a certain
extent.

DPM models select the model order by sampling from a posterior of the form

n

α+ n

n∑
i=1

δθi
(θ) +

α

α+ n
G0(θ) =:

n

α+ n
Ĝn(θ) +

α

α+ n
G0(θ)

which is additionally convolved with an observed-data likelihood F (· ). Now assume
that, instead of sampling, we were to choose a component by maximization. That is, G0

is selected (and the model split) if

n

∫
Ωθ

F (x|θ)Ĝn(θ) dθ < α

∫
Ωθ

F (x|θ)G0(θ) dθ (4.1)

The integral on the lhs is (mn,k denotes the number of samples assigned to cluster k)∫
Ωθ

F (x|θ)Ĝn(θ) dθ =
NC∑
k=1

mn,kF (x|θ∗k) =: gn(x)

and hence, up to scaling, just the likelihood of x under the finite mixture model given
by

∑NC
k=1

mn,k

n F (x|θ∗k). Let’s denote the base measure integral as

g0(x) :=
∫

Ωθ

F (x|θ)G0(θ) dθ.

Now we can rewrite (4.1) to get

ngn(x) < αg0(x)
gn(x)
g0(x)

<
α

n
.
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4 Comparative study of clustering methods

The numerator on the lhs is a likelihood for given x, and the denominator can be
regarded as the likelihood of x under a “world model” that mixes according to G0. The
lhs can thus be regarded as a likelihood ratio statistic testing “no split” against the
“split” event.

Considering the following model order selection procedure: A finite mixture model

MNC
(x|{θ∗k}

NC
k=1,π) :=

NC∑
k=1

πkF (x|θ∗k)

has been estimated on n observations. A new observation xn+1 may either be explained
by the current model, or by an additional component F (· |θ∗NC+1) with mixture weight
πNC+1 = 1

n+1 . The modified model is denoted by MNC+1. Assume first that θ∗NC+1

is predefined. To decide whether or not the observation xn+1 solicits a split, we can
compare the models with a likelihood ratio test statistic. The model is split if the
modified model achieves a higher likelihood score, i.e. if

MNC
(xn+1|{θ∗k}

NC
k=1,π)

MNC+1(xn+1|{θ∗k}
NC+1
k=1 ,π)

< 1. (4.2)

Instead of the plain likelihood test, we may opt for an information criterion based test:
AIC/BIC scores are computed for both models, and the model with the smaller score is
selected. For any model with likelihood `(x1, . . . ,xn), the AIC score is

AICNC
(x1, . . . ,xn|{θ∗k}

NC
k=1,π) := − ln `(x1, . . . ,xn|{θ∗k}

NC
k=1,π) + κ(NC),

where κ(NC) denotes the number of free model parameters. The BIC score is

BICNC
(x1, . . . ,xn|{θ∗k}

NC
k=1,π) := − ln `(x1, . . . ,xn|{θ∗k}

NC
k=1,π) +

1
2
κ(NC) lnn.

These scores are standard and are usually used in a global, brute-force manner: We
run a clustering algorithm on the complete data set for different number of clusters and
compare the likelihood returned by them with the scores as given above. We choose the
model with the smallest score. Here, however we will use the scores as a local criterion
for splitting the model based on a single observation. We will omit the conditioning on
the model to keep the notation uncluttered. The likelihood ratio test in (4.2) can be
substituted by an AIC comparison (note that the log likelihood terms up to the data
point xn+1 can be ignored, as they are the same on each side of the equation):

AICNC
(xn+1) > AICNC+1(xn+1)

− lnMNC
(xn+1) + κ(NC) > − lnMNC+1(xn+1) + κ(NC + 1)
MNC

(xn+1)
MNC+1(xn+1)

< exp
(
κ(NC)− κ(NC + 1)

)
.
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4.2 Splitting information criterion

Similarly, for BIC:

BICNC
(xn+1) > BICNC+1(xn+1)

− lnMNC
(xn+1) +

κ(NC)
2

ln(n+ 1) > − lnMNC+1(xn+1) +
κ(NC + 1)

2
ln(n+ 1)

MNC
(xn+1)

MNC+1(xn+1)
<

1
n+ 1

exp
(

1
2
(κ(NC)− κ(NC + 1))

)
.

4.2 Splitting information criterion

The discussion in the previous section showed that the algorithms based on the informa-
tion criterion are very similar under certain conditions to a Dirichlet process. Here we
describe a new algorithm that is based on the results of the previous section; it combines
ideas from the information theoretic models and the Dirichlet process. However, as we
will see, this algorithm shows to have serious drawbacks, which we will discuss later on.

Algorithm 4.1: Fusion of the Dirichlet process and BIC/AIC
Let the state of the algorithm consist of z1, . . . , zN , π1, . . . , πNC

and θ∗1, . . . ,θ
∗
NC

;
while not converged do

for n = 1, . . . , N do
if m−n,zn = 0 then

remove θ∗zn
from the state;

remove πzn from the state;
set the πk according to the m−n,k;

end
if SNC

(xn) < SNC+1(xn) then
NC = NC + 1;
zn = NC ;
θ∗NC

= arg maxθ p(θ|xn) and add it to the state;
add πNC

to the state;
set the πk according to the mn,k;

else
zn = arg maxk p(xn|θ∗k);
set the πk according to the mn,k;

end
end

end

Where SNC
is either given by BIC or AIC and where we dropped the parameters,

in favour for an uncluttered notation. mn,k denotes the number of samples assigned
to cluster k when sample xn is included, m−n,k has the same meaning, but with xn

excluded. We tested this algorithm on two simple data sets. The results are shown in
Figure 4.1.
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4 Comparative study of clustering methods

While the algorithm performs well, and very similar to the DP-Gibbs sampler for
small covariance, the algorithm is considerably worse for larger data sets. Looking at the
results, one observes that especially the BIC version of the algorithm shows unexpected
behaviour: it gets worse for larger data sets. Can we explain this? Consider a data set
with 3 clusters.

• In the standard BIC/AIC formulation we run in a brute-force manner, for all
possible1 values for NC , an EM clustering algorithm and add the complexity term
according to AIC/BIC to compare the different models. However, this complexity
costs are “paid” by all the data points. Say, if the third cluster contains 10 data
points, this third cluster is voted for by 10 data points. In the algorithm above,
however, we will justify the introduction of a new cluster solely based on a single
data point, which for large enough variance might not suffice to introduce the
additional cluster. The problem could be summarized as a global versus local MOS
criterion.

• However, the Dirchlet process, also decides only based on a single observation,
whether we should add an additional cluster. Why should the DP not suffer
from the same problem? The important difference here is that in the Dirichlet
formulation we have a probabilistic decision, whereas in the algorithm above the
decision is a maximization. To illustrate the difference assume that for the DP
each of the 10 data points has individually a probability of 0.2 for introducing a
new cluster. The probability, however, that at least one new cluster is created
is approximately 0.9, which can be computed by the Binomial distribution. This
means that in the DP formulation we are likely to create the third cluster, while
in the algorithm above, this will never happen.

• The BIC formulation punishes models more aggresively than the AIC, especially
for large data sets. It is thus to be expected, that the problem becomes even more
evident for BIC. However, as can be seen in Figure 4.1, it also happens for the AIC
splitting.

The informal discussion above should have shown that Algorithm 4.1 can not compete
with the DP or the brute-force information theoretic algorithms and should not be used
in practice. For this reason, we also won’t include it in the comparison.

1in practice an upper bound on the number of clusters will be set.
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4.2 Splitting information criterion
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Figure 4.1: The splitting algorithms compared to the brute-force algorithms. The latter
work better, especially for harder configurations.
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4 Comparative study of clustering methods

4.3 Evaluation

In the following we will always assume a mixture model is given and we generate samples
from this model, which results in data of which we already know the cluster assignments,
the components and the mixing proportions. We are then interested in how well the
different clustering algorithms reconstruct these parameters, however, what’s a good
measure for this task?

There are different ways to evaluate the performance of a clustering method. For
traditional clustering algorithms, where the number of components is assumed to be
known, one usually uses the the log likelihood of the data. We will base our comparison
of MOS strategies mostly on the log likelihood, too, as we found this to lead to sensible
results. However, we did use a special validation data set for the comparison of the log
likelihood. Beside the log likelihood, there exist also a number of alternative measures,
which however all turned out to show suboptimal effects, we list them below.

expected number of clusters For the MOS quality one could compare the expected
number of clusters with the true number of clusters. However this gives little
indication of the quality of the model, as this measure doesn’t consider the cluster
factors nor the mixing proportions.

assignment error Compare the correct cluster assignment with the assignment inferred
by the clustering algorithms, as the assignment is only known up to permutations,
we first need to find a mapping of the inferred assignments to the given assign-
ments. One can solve this for example in an optimistic way by using the Hungarian
method [Kuhn, 1955], an algorithm from theoretical computer science. However
this measure is not suitable for unbalanced datasets, as an algorithm might never
identify a small cluster but still only have a relatively small assignment error.

Hubert’s Γ index, Rand’s index and Jaccard’s index Similar in spirit, and all of them
measuring quantities similar to the assignment error. For more details see the
subsection at the end of this section.

As already mentioned we evaluated the different scores and measurements and found
the log likelihood to best capture the goodness of fit, “overfitting” should be prevented
by working on a validation set that is not used by the clustering algorithms. Also, while
overfitting is for example possible in GMM, when we also infer the covariance of the
clusters (each data point gets a Dirac impulse), we don’t infer the variance here and
thus overfitting can already not happen on the normal data.

4.3.1 Running time

As we were mainly interested in comparing the different approaches to model clusterings
with automatic2 selection of the number of clusters, we did not compare the running

2To some extent, the DP still has an concentration parameter α.
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4.3 Evaluation

time of the different algorithms/models in an elaborate manner. We refrained from do-
ing so, because such a comparison is highly implementation dependent; as most of the
programming for this master’s thesis was done in Matlab, the variational algorithm
has for example an advantage, as most of its operations can be formulated efficiently as
matrix/vector computations, this is usually not the case for sampling algorithms, such
as the Gibbs sampler.

As the running time is a very important criterion for an algorithm, we can still give an
highly informal comparison of the algorithms: The variational algorithm is according to
our observations non-surprisingly quite fast and has the above mentioned advantage that
most of the operations can be described as vector/matrix manipulations. The collapsed
Gibbs algorithm is the most accurate and fastest out of the three Gibbs algorithms
described in section 3.1. However, according to our experiments, it is still considerably
slower than the variational inference, especially for large data sets. This, again, comes
as no surprise, as variational algorithms are usually considered preferable for large-scale
problems, because of their efficiency. Our AIC and BIC implementations are faster
than the Gibbs sampling, but still slower than the variational algorithm, especially the
repeated clustering for different number of clusters makes the algorithm slow.

4.3.2 Hubert’s Γ index

This subsection is taken from [Law et al., 2002]. Given the data x1, . . . ,xN and two
clustering results C1 and C2 (with number of clusters N (1)

C and N (2)
C respectively), define

Ik(xi,xj) =

{
1 if xi and xj are in the same cluster in Ck

0 otherwise

a =
N−1∑
i=1

N∑
j=i+1

I1(xi,xj)I2(xi,xj)

b =
N−1∑
i=1

N∑
j=i+1

I1(xi,xj)(1− I2(xi,xj))

c =
N−1∑
i=1

N∑
j=i+1

(1− I1(xi,xj))I2(xi,xj)

d =
N−1∑
i=1

N∑
j=i+1

(1− I1(xi,xj))(1− I2(xi,xj)).

So a represents the number of pairs of data that are in the same cluster in both C1 and
C2. b denotes the number of pairs of data that are in the same cluster in C1 but not in
C2, while c denotes the number of pairs of data that are in the same cluster in C2 but
not in C1. Finally, d means the number of pairs of data that are in different clusters in
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4 Comparative study of clustering methods

C1 or C2. There is an efficient way to compute a, b, c an d. Define nij to be the number
of data that are that both in the i-th cluster of C1 and the j-th cluster of C2. Let mi be
the total number of pairs of data that are in the same cluster in Ci. Denote the total
number of pairs of data by M . Then

M =
1
2
N(N − 1)

m1 =

∑N
(1)
C

i=1 (
∑N

(2)
C

j=1 nij)(
∑N

(2)
C

j=1 nij − 1)
2

=
1
2

(N
(1)
C∑

i=1

(
N

(2)
C∑

j=1

nij)2 −N

)

m2 =

∑N
(2)
C

i=1 (
∑N

(1)
C

j=1 nij)(
∑N

(1)
C

j=1 nij − 1)
2

=
1
2

(N
(2)
C∑

i=1

(
N

(1)
C∑

j=1

nij)2 −N

)

a =
N

(1)
C∑

i=1

N
(2)
C∑

j=1

nij(nij − 1)
2

=
1
2

(N
(1)
C∑

i=1

N
(2)
C∑

j=1

n2
ij −N

)
b = m1 − a

c = m2 − a

d = M − a− b− c

The similarity measures between C1 and C2 are then given as follows:

• Rand’s index:
(a+ d)/M

• Jaccard’s index:
a/(a+ b+ c)

• Hubert’s Γ index
Ma−m1m2√

m1m2(M −m1)(M −m2)

Note that the ranges of Rand’s index and Jaccard’s index are both [0, 1]. The larger
these two indices, the more similar C1 and C2. For Hubert’s Γ index, the range is [−1, 1].
C1 and C2 are regarded as more similar if the absolute value of the index is closer to one.
Note that Hubert’s Γ index is undefined when either N (1)

C = 1 or N (2)
C = 1.

4.4 Data from a Bayesian finite mixture model

In this section we compare the different clustering methods that we introduced in pre-
ceding chapters. We do this on synthetic data from a finite mixture model. It has to be
pointed out, that this is not data from a Dirichlet process and it is thus interesting how
clustering methods based on the Dirichlet process perform compared to more traditional
methods. The data we use is, except for two data sets, fairly balanced in the sense that
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4.4 Data from a Bayesian finite mixture model

the different clusters have around the same size, this is typically not the case for data
from a Dirichlet process, there one observes smaller clusters.

For this experiment we fix the number of clusters, here denoted by NC , and generate
the data as follows:

π ∼ Dir(βα/NC , . . . , βα/NC)
θ∗k ∼ G0(λ) 1 ≤ k ≤ NC

zn |π ∼ Mult(zn|π, 1)

xn | zn, {θ∗k}
NC
k=1 ∼ F (xn|θ∗zn

).

(4.3)

With β = 1 this is the same as in section 2.6.4: a Dirichlet process in the limit when
NC → ∞, however we used a finite value for NC and also set β to values much larger
than 1; this results in well balanced clusters, as the components of π are close to 1/NC .
We generate the results for different configurations sampled from the process described
in equation (4.3), additionally we alter the number of clusters NC , too.
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4 Comparative study of clustering methods

4.4.1 Gaussian data

Zurich dataset: 3 clusters

The Zurich dataset characteristics and our experiments are summarized in Table 4.1.

type Gaussian: µθ = [0, 0],Σθ = 3I,Σx = σ2I
dimension 2
number of clusters NC 3
balanced yes
σ2 0.05, 0.1, 0.2, 0.3, 0.4
α 0.2
N 25, 50, 100, 200, 300, 500
repetitions 10
algorithms run collapsed Gibbs, variational, AIC, BIC

Table 4.1: The Zurich dataset and the experiments we performed on it.

We show samples from the two different configurations of the Zurich dataset in Fig-
ure 4.2.

−4 −2 0 2 4

−5

0

5

−2.5 0 2.5 5

−2

−1

0

1

Figure 4.2: On the left we see samples from the easier Zurich dataset, on the right from
the harder dataset, where two clusters largely overlap. The covariance in
the plots above is σ2 = 0.1.

The results on the Zurich dataset are shown in Figure 4.3. We observe that the differ-
ent model order selection algorithms perform around equally. However, the expectation
of the log likelihood was consistently smaller for the Dirichlet process methods on small
datasets, where the σ2 parameter is not very large, but this was only within standard
deviation.
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4.4 Data from a Bayesian finite mixture model
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(a) easier configuration, σ2 = 0.05
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(b) easier configuration, σ2 = 0.4
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(c) harder configuration, σ2 = 0.05

Figure 4.3: The first and second row show results on the easier Zurich dataset for dif-
ferent values of σ2. The third row shows a result from the harder dataset.
As we can clearly see in the plot of the expected number of clusters for the
harder dataset, the number of clusters approaches 3, the more data we see.
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4 Comparative study of clustering methods

Berne dataset: 7 clusters

The Berne dataset characteristics and our experiments are summarized in Table 4.2. It’s
basically the same as the Zurich dataset, but here we have 7 clusters, instead of only 3.

type Gaussian: µθ = [0, 0],Σθ = 3I,Σx = σ2I
dimension 2
number of clusters NC 7
balanced yes
σ2 0.05, 0.1, 0.2, 0.3, 0.4
α 0.2
N 25, 50, 100, 200, 300, 500
repetitions 10
algorithms run collapsed Gibbs, variational, AIC, BIC

Table 4.2: The Berne dataset and the experiments we performed on it.

We show samples from the two different configurations of the Berne dataset in Fig-
ure 4.4.
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Figure 4.4: On the left we see two samples from the easier Zurich dataset, on the right
from the harder dataset, where two clusters largely overlap. The covariance
in the plots above is σ2 = 0.1.

The results on the Berne dataset are shown in Figure 4.5. We observe that the different
model order selection algorithms perform around equally. Again, the expectation of
the log likelihood was consistently smaller for the Dirichlet process methods on small
datasets, where the σ2 parameter is not very large, but this was only within standard
deviation.

50



4.4 Data from a Bayesian finite mixture model
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(a) easier configuration, σ2 = 0.05
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(b) easier configuration, σ2 = 0.4
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(c) harder configuration, σ2 = 0.05

Figure 4.5: The first and second row show results on the easier Berne dataset for different
values of σ2. The third row shows a result from the harder dataset.
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4 Comparative study of clustering methods

London dataset: higher dimensionality

The London dataset characteristics and our experiments are summarized in Table 4.3.
Again, it’s basically the same as the Zurich dataset, but here we have a dimensionality
of 8, instead of 2.

type Gaussian: µθ = [0, . . . , 0],Σθ = 3I,Σx = σ2I
dimension 8
number of clusters NC 5
balanced yes
σ2 0.1, 0.2, 0.3, 0.6, 0.8
α 0.2
N 100, 200, 300, 500, 700
repetitions 10
algorithms run collapsed Gibbs, variational, AIC, BIC

Table 4.3: The London dataset and the experiments we performed on it.

The results on the London dataset are shown in Figure 4.6. Also on this data set, all
of the algorithms perform about equal.

−2200

−2100

−2000

−1900

〈l
o
g
li
k
e
li
h
o
o
d
〉

〈l
o
g
li
k
e
li
h
o
o
d
〉

200 400 600

NN

ground truth

Gibbs

variational

AIC

BIC

5

5.5

6

〈N
C
〉

〈N
C
〉

200 400 600

NN

−3000

−2500

−2000

〈l
o
g
li
k
e
li
h
o
o
d
〉

〈l
o
g
li
k
e
li
h
o
o
d
〉

200 400 600

NN

ground truth

Gibbs

variational

AIC

BIC 4.5

5

5.5

6

6.5

〈N
C
〉

〈N
C
〉

200 400 600

NN

Figure 4.6: The results on the London dataset for two different values of σ2 (top: σ2 =
0.1, bottom: σ2 = 0.8). Again we observe a slight advantage of the DPM
on small datasets with small covariance.
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4.4 Data from a Bayesian finite mixture model

Delhi dataset: unbalanced clusters

Here we changed the size of the different clusters. From looking at data generated by
a Dirichlet process, one would assume that the DP performs very well on this kind of
data, as it often is unbalanced. Surprinsingly, again we did not see much of a difference.

type Gaussian: µθ = [0, 0],Σθ = 3I,Σx = σ2I
dimension 2
number of clusters NC 3
balanced no: (1) [0.66, 0.11, 0.23], (2) [0.67, 0.0813, 0.2464]
σ2 0.05, 0.1, 0.2, 0.3, 0.4
α 0.2
N 25, 50, 100, 200, 300, 500
repetitions 10
algorithms run collapsed Gibbs, variational, AIC, BIC

Table 4.4: The Delhi dataset and the experiments we performed on it.

The results on the Delhi dataset are shown in Figure 4.7.

−1000

−800

−600

〈l
o
g
li
k
e
li
h
o
o
d
〉

〈l
o
g
li
k
e
li
h
o
o
d
〉

0 200 400

NN

ground truth

Gibbs

variational

AIC

BIC

1

2

3

4

〈N
C
〉

〈N
C
〉

0 200 400

NN

−750

−700

−650

−600

〈l
o
g
li
k
e
li
h
o
o
d
〉

〈l
o
g
li
k
e
li
h
o
o
d
〉

0 200 400

NN

ground truth

Gibbs

variational

AIC

BIC

2

3

4

〈N
C
〉

〈N
C
〉

0 200 400

NN

Figure 4.7: The results on the Delhi dataset. Top: easier configuration with σ2 = 0.4.
The DPM methods seem slightly inferior. Bottom: harder configuration
with σ2 = 0.05.
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4 Comparative study of clustering methods

Rome dataset: high dimensionality and many clusters

So far, there was not much of a difference between the different MOS algorithms. In this
data set we further increase the number of clusters and the dimensionality.

type Gaussian: µθ = [0, . . . , 0],Σθ = 3I,Σx = σ2I
dimension 12
number of clusters NC 15
balanced yes
σ2 0.2, 0.3, 0.4
α 1
N 100, 200, 500, 700
repetitions 10
algorithms run collapsed Gibbs, variational, AIC, BIC

Table 4.5: The Rome dataset and the experiments we performed on it.

The results on the Rome dataset are shown in Figure 4.8.
Looking at the results of the variational algorithm, we observed that for some of

the repetitions (on newly sampled data) the variational algorithm led to much worse
likelihoods on the validation set; it seems to converge to local minima. Investigating
further we found out that neither the dimensionality nor the number of clusters itself
is a problem, but rather the combination of the two seems to lead to problems. We
could improve on the results shown above by increasing the number of iterations of the
variational algorithm and increasing the upper bound on the number of clusters, however
it still happened that some of the repetitions of the variational algorithm converged
to configurations with considerably smaller likelihood than what the other algorithms
returned. We also checked the variational inference implementations from [Kurihara
et al., 2007b,c], which are freely available from the first author’s webpage, however these
algorithms show similar problems, while on simpler problems they lead to almost the
same result as our variational implementation.
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4.4 Data from a Bayesian finite mixture model
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(c) σ2 = 0.4

Figure 4.8: The results for the Rome dataset.
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4 Comparative study of clustering methods

4.4.2 Dirichlet/Multinomial

So far we have considered Gaussian data, we now switch to histogram data, which is
another very important model for certain applications.

Boston dataset: 3 clusters

The Boston dataset characteristics and our experiments are summarized in Table 4.6.

type Multinomial, Dirichlet prior: α = [1, 1, 1, 1]
dimension 4
number of clusters NC 3
balanced yes
M 15
α 0.2
N 25, 50, 100, 200, 300, 500
repetitions 10
algorithms run collapsed Gibbs, variational, AIC, BIC

Table 4.6: The Boston dataset and the experiments we performed on it.

We show the cluster means from the two different configurations of the Boston dataset
in Figure 4.9.
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Figure 4.9: On the left we see the cluster parameters of the three clusters for the simpler
configuration, on the right for the slightly harder configuration.

The results on the Boston dataset are shown in Figure 4.10. Again, as for the Gaussian
data sets, we observe that the different model order selection algorithms perform around
equally.
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4.4 Data from a Bayesian finite mixture model
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(a) easier configuration
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Figure 4.10: The first row shows the result on the easier configuration, while the second
row shows the result on the slightly harder configuration.
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4 Comparative study of clustering methods

Toronto: 7 clusters

The Toronto dataset is similar to the Boston dataset, however here we consider 7 clusters,
instead of only 3. The characteristics and our experiments are summarized in Table 4.7.

type Multinomial, Dirichlet prior: α = [1, 1, 1, 1]
dimension 4
number of clusters NC 7
balanced yes
M 15
α 0.8
N 25, 50, 100, 200, 300, 500
repetitions 10
algorithms run collapsed Gibbs, variational, AIC, BIC

Table 4.7: The Toronto dataset and the experiments we performed on it.

As before, there’s not much of a difference between the different algorithms for the
log likelihood of the inferred model on the validation set.
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Figure 4.11: Results on the Toronto data set. Top: easier configuration, bottom: harder
configuration.
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4.4 Data from a Bayesian finite mixture model

New York: Higher dimensionality

In this data set we increase the dimensionality of the problem. The New York dataset
characteristics and our experiments are summarized in Table 4.8.

type Multinomial, Dirichlet prior: α = [1, . . . , 1]
dimension 10
number of clusters NC 5
balanced yes
M 15
α 0.4
N 25, 50, 100, 200, 300, 500
repetitions 10
algorithms run collapsed Gibbs, variational, AIC, BIC

Table 4.8: The New York dataset and the experiments we performed on it.

For small datasets the Gibbs algorithm showed to be inferior when compared with the
other algorithms.
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Figure 4.12: Results on the New York data set.
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4 Comparative study of clustering methods

Los Angeles: unbalanced clusters

This is data set is unbalanced, and some clusters are more important than others. The
Los Angeles dataset characteristics and our experiments are summarized in Table 4.9.

type Multinomial, Dirichlet prior: α = [1, 1, 1, 1]
dimension 4
number of clusters NC 3
balanced no: [0.713,0.249,0.039] and [0.013,0.034,0.953]
M 15
α 0.2
N 25, 50, 100, 200, 300, 500
repetitions 10
algorithms run collapsed Gibbs, variational, AIC, BIC

Table 4.9: The Los Angeles dataset and the experiments we performed on it.

For the harder configuration, the log likelihood of the BIC algorithm is slightly smaller
than of the other methods.
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Figure 4.13: Results on the Los Angeles data set. Top: easier configuration, bottom:
harder configuration.
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4.5 Conclusions

San Francisco: higher dimensionality and many clusters

In this dataset we further increased the dimension and the number of clusters. The San
Francisco dataset characteristics and our experiments are summarized in Table 4.10.

type Multinomial, Dirichlet prior: α = [1, . . . , 1]
dimension 20
number of clusters NC 12
balanced yes
M 15
α 2
N 25, 50, 100, 200, 300, 500
repetitions 10
algorithms run collapsed Gibbs, variational, AIC, BIC

Table 4.10: The San Francisco dataset and the experiments we performed on it.

For smaller datasets the Gibbs algorithm performs quite poor. This already happened
in the New York data set and as both are datasets with higher dimensionality, it looks
as if the Gibbs algorithm and higher dimensional histogram is a bad combination for
small datasets.
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Figure 4.14: Results on the San Francisco dataset.

4.5 Conclusions

The general outcome of the comparison is that there is not a huge difference of the
various MOS strategies considered on our synthetic data sets for the log likelihood.
However, if one considers the number of clusters inferred there is a bigger difference. As
BIC usually adds clusters in a very conservative way the number of clusters inferred is
sometimes underestimated for smaller data sets. On the other hand, the BIC score is
usually very steady and the variance is often smaller than for the other methods. The
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4 Comparative study of clustering methods

variational inference for the DP, except for the Rome data set, shows to be very good,
if one considers the log likelihood. The number of clusters inferred is more dynamic
than with the BIC, but still considerably fewer clusters than with the Gibbs algorithm
are estimated. The Gibbs algorithm usually overestimates the number of clusters and
also shows a large variance, however this seems to not have a bigger impact on the log
likelihood of the inferred model. On small data sets, it seems as if the DP methods
would have a small advantage, as they often return a smaller log likelihood for N ≤ 100.
Initially, one fear was that the Dirichlet process methods would perform considerably
worse, as nice theories sometimes perform bad in practice. At least in our experiments,
we did find no evidence that the DP would be inferior to the more traditional and
popular information theoretic methods.
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5 Nonparametric Bayesian Biclustering

They say the devil’s water. It ain’t so sweet. You
don’t have to drink right now. But you can dip
your feet. Every once in a little while.

(The Killers in ‘When You Were Young’)

So far we’ve discussed various models and algorithms that have been proposed to tackle
the clustering problem. While the discussion of clustering methods did include data of
arbitrary dimensions (N samples of dimension d), the clustering problem itself always
was one-dimensional: we assign exactly one cluster to each of the N data points. In
this chapter we discuss a (restricted) extension to 2D, usually referred to as biclustering
or sometimes also co-clustering. Informally, the goal is to cluster both, the objects (the
rows of X) and the features (the columns of X) simultaneously for an appropriately
defined cost function.

Definition 5.1 (Biclustering, Bicluster). Given a data matrix X of dimension N×d. A
biclustering of this matrix corresponds to an object partition CO = {O1,O2, . . . ,ONO

C
}

and a feature partition CF = {F1,F2, . . . ,FNF
C
}. We formally define the partition of the

objects as follows:

O1,O2, . . . ,ONO
C
, Oµ ⊆ {1, . . . , N}, µ = 1, . . . , NO

C ,

O1 ∪ O2 ∪ . . . ∪ ONO
C

= {1, . . . , N},

Oµ ∩ Oµ′ = ∅, µ, µ′ = 1, . . . , NO
C , µ 6= µ′.

And equivalently for the features as:

F1,F2, . . . ,FNF
C
, Fν ⊆ {1, . . . , d}, ν = 1, . . . , NF

C ,

F1 ∪ F2 ∪ . . . ∪ FNF
C

= {1, . . . , d},

Fν ∩ Fν′ = ∅, ν, ν ′ = 1, . . . , NF
C , ν 6= ν ′.

A bicluster (µ, ν) refers to the elements of X indexed by the intersection of the rows as
specified by Oµ and the columns as specified by Fν . For given NO

C and NF
C there exist

NO
C ×NF

C biclusters.

An example of a simple biclustering is shown in Figure 5.1. As the example suggests,
we are usually not interested in an arbitrary biclustering, but in one where the elements
within a bicluster are similar. Also, we want to minimize the number of biclusters.
This is a typical optimization problem as often encountered in computer science: on one

63



5 Nonparametric Bayesian Biclustering

a b b a a a b
a 4 1 0 5 4 5 0
b 7 10 9 6 7 7 10
a 6 0 0 4 4 4 1
c 13 4 5 12 13 12 4
a 5 1 1 4 5 5 0

a a a a b b b
a 4 5 4 5 1 0 0
a 6 4 4 4 0 0 1
a 5 4 5 5 1 1 0
b 7 6 7 7 10 9 10
c 13 12 13 12 4 5 4

Figure 5.1: An example of biclustering. Left: the data matrix with the clustering of
the rows and columns indicated by chars. Right: the same matrix, but
reordered according the cluster assignments, we see that all the elements of
the 6 biclusters have similar numbers.

end we have the biclustering where each row and column is in its own cluster and the
biclusters each have size 1×1 (many biclusters, “infinite” similarity within the biclusters)
and on the other end we have the biclustering that assigns all rows and all columns to
one cluster (only one bicluster, but possibly very small similarity within the bicluster).
So far we have not given a formal definition of what we mean with similar, we refrained
from doing so because there does not exist one unique similarity measure. It needs to
be specified depending on the application and the underlying model. As with many
optimization problems, in general the problem is NP-hard [Garey and Johnson, 1979].

objects

features

Figure 5.2: Left: sparse input data matrix where the non-zero elements are shown in
black. To the right we see the same data, with the rows and columns rear-
ranged to reveal the biclusters. Note that the input is normally not already
that nicely structured, see for example Figure 5.3 for a harder configuration.

It should have become obvious, that the biclustering problem can not be regarded as
two independent instances of the clustering problem in general, due to its 2D structure.
Nevertheless, for some data models with restrictive assumptions, this reduction holds.
We discuss this in section 5.1.1.

Biclustering can also be interpreted in a graph-theoretic sense. Let us define a bipartite
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Figure 5.3: Input to the left and rearranged matrix to the right showing the biclusters.

graph G = (O∪F,E), where O = {1, . . . , N} (the objects), F = {1, . . . , d} (the features)
and Eij = Xij for i ∈ {1, . . . , N} and j ∈ {1, . . . , d}. The nodes of the graph are given
by O ∪ F , the undirected edges by E. Every object i is connected to every feature j by
an edge Eij . The biclustering corresponds to partitioning the graph into bicliques, see
Figure 5.4. The cost associated with a particular biclustering, can then be formulated
by an appropriately defined cut function. For more background information see for
example Dhillon [2001] and Busygin et al. [2005].

features {1, . . . , d}

objects {1, . . . , N}

Figure 5.4: Expressing biclustering as a graph theoretic problem. Here for 2 objects and
4 features We indicate a possible partitioning of the bipartite graph into two
bicliques. This corresponds to 4 biclusters, two of them of size 1 × 3, the
others have size 1× 1.

The most important application of biclustering these days is in Biology [Cheng and
Church, 2000, Madeira and Oliveira, 2004, Prelić et al., 2006], where it is prominently
used for clustering micro-array data (the genes correspond to the objects, conditions
to the features). However, there exist also applications in other areas, for example in
information retrieval and natural language processing [Dhillon, 2001] (which words are
important for a document corpus?) or in computer vision (which colors are dominant
for the background?).

Although, unlike clustering, biclustering does not seem very popular in the machine
learning community, several methods (parametric and nonparametric) have been pro-
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5 Nonparametric Bayesian Biclustering

posed for this purpose. Bock [2003] assumes the number of clusters for the objects and
features is known and maximizes the ψ-divergence of Csiszár between the co-occurrence
of a bicluster and the individual, independent clusters; the Kullback-Leiber divergence is
for example an instance of the ψ-divergence. More recently Seldin et al. [2007] proposed
a method based on the information bottleneck: the objective is very similar to the one
of Bock. The approach of Seldin et al. does however not assume that the number of clus-
ters is known; they use a minimum description length (MDL) strategy for inferring the
number of object and feature clusters. Approaches based on the Dirichlet process [Kemp
et al., 2006, Kurihara et al., 2006, 2007a] have also been proposed recently, and will be
discussed later on. Another related approach is given in [Meeds et al., 2007], the authors
do not consider biclustering, but latent feature analysis, and as a nonparametric prior
they use the Indian buffet process. In their approach it is possible for the clusters to
overlap, which is sometimes desirable for applications in biology.

Depending on the model assumptions for biclustering, unsupervised feature selec-
tion [Law et al., 2003, Roth and Lange, 2004] shares similar goals, such as: How im-
portant is a feature j for object class µ? Or how similar are two features j and j′?
However, there’s a key difference between the two: While, in the context of biclustering,
we are interested in grouping or clustering features together, in feature selection, as the
name implies, we also want to select the discriminative features. However, assuming
the quality of the inferred feature grouping is good, one can readily derive a criterion
for the selection of the features: we should select only one feature per feature class,
or could even build an average of all the features within a class and thus construct a
new feature. It’s important to realize the asymmetric nature of the feature clustering
problem: we have objects which show (depending on the cluster to which they belong
to) certain properties, called features, and as it so happens, we represent these objects
in a matrix. In contrast, a general biclustering model should arguably be defined on the
whole matrix, which does not allow such an asymmetric interpretation anymore.

Despite being more complex than standard clustering, most of the concepts from
clustering apply directly to biclustering. In particular also the problem of model order
selection, which we have discussed extensively throughout this thesis. In this chapter we
are interested in the application of MOS ideas from standard clustering to biclustering.
To that end, we first introduce a nonparametric mixture model for biclustering and
discuss various specialized instances of this model. In the second part we also derive
Gibbs sampling algorithms for these models.

5.1 Statistical models for biclustering

In our discussion we will restrict ourselves to instances, where the elements of the data
matrix X are discrete. If we would encounter continuous values in practice, we could
usually fulfill this assumption by rescaling and rounding our data. Furthermore, we
focus on describing the different models and assumptions from a statistical and machine
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learning point of view, this might differ from literature in other communities. Most of
the approaches described here, show similarities and are in fact inspired by models that
were already proposed for clustering co-occurrence data [Hofmann and Puzicha, 1998].
In the co-occurrence setting, one however assumes less structure in that an object can
be assigned to more than one object cluster or a feature can be assigned to more than
one feature cluster. In our discussion we will restrict ourselves to biclustering models
with uniform distribution within a bicluster. Most biclustering algorithms have this
assumption in one form or the other; it formalizes the assumption of a coherent “block”.

5.1.1 Symmetric models for biclustering

In this subsection we introduce two symmetric, generative models for biclustering. The
nomenclature of distinguishing objects and features is unfortunate for this part, as it
already implies an asymmetry in the problem, which is not desired here.

Let’s denote the total number of counts in the matrix X by R =
∑

i,j Xij and assume
that the matrix has dimension N × d. For the symmetric models to come, it is easier
to represent our data as a serialized version of X; we use the notation of Hofmann and
Puzicha: the atomic entities we’ll be studying are two finite sets X = {x1, . . . , xN} (the
set of objects) and Y = {y1, . . . , yd} (the set of features). As elementary observations
we consider pairs (xi, yj) ∈ X ×Y, i.e. a joint occurrence of object xi and feature yj . All
data is numbered and collected in a sample set S = {(xi(r), yj(r), r) : 1 ≤ r ≤ R} with
arbitrary ordering.

Infinite symmetric biclustering model

We can explain the observed data S by the infinite symmetric biclustering model (ISBM)
below.

zO |αO ∼ CRP(αO)

zF |αF ∼ CRP(αF )

Π |β, zO,zF ∼ Dir(Π|Λ)
(µr, νr) |Π ∼ Mult((µr, νr)|Π, 1)

xi(r) |zO, µr ∼ Mult(xi(r)|θOµr , 1)

yj(r) |zF , νr ∼ Mult(yj(r)|θFνr , 1).

(5.1)

Here Λ is a matrix of dimension NO
C ×NF

C which is (deterministically) constructed as
follows:

Λµ,ν = βmO
µm

F
ν ,

where we assume a uniform prior distribution over the bins (i, j) and β expresses our
prior belief (per bin). mO

µ and mF
ν denote the number of objects and features assigned

to object cluster µ and feature cluster ν, respectively. Furthermore each of the θOµ and
θFν for µ = 1, . . . , NO

C and ν = 1, . . . , NF
C is a probability vector of dimension N or
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d, specifying the probability of object i or feature j for an object cluster µ or feature
cluster ν, respectively. These probability vectors are defined as follows:

θ
Oµ

i =

{
1

mO
µ

if zOi = µ

0 otherwise,

and

θFν
j =

{
1

mF
ν

if zFj = ν

0 otherwise.

The parameters θOµ and θFν are deterministically determined by the two clusterings zO

and zF . This generative process can be illustrated by the graphical model in Figure 5.5.

R

xi(r) yj(r)

Π

β

(µr, νr)

zF

αF

zO

αO

Figure 5.5: The infinite symmetric biclustering model.

In this model we first generate a clustering of the objects and features by a Chinese
restaurant process, this then determines the structure (given by NO

C × NF
C ) and the

prior belief (given by Λ) of the probability matrix Π, which is sampled from a Dirichlet
distribution given the prior Λ. The entry (µ, ν) of Π determines the probability of the
bicluster (µ, ν). For each count r = 1, . . . , R in the data matrix X, we then first draw
a bicluster (µr, νr) and generate an object/feature pair (xi(r), yj(r)) within the bicluster
(µr, νr).
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Factorized infinite symmetric biclustering model

We can simplify the biclustering model in (5.1) by assuming that Π factorizes: Π =
πO×πF , i.e. the probability of a bicluster (µ, ν) is given by: Πµ,ν = πOµ π

F
ν . πO and πF

are probability vectors of size NO
C and NF

C , respectively. Like this, the two clusterings
become fully independent and can be handled separately. This is a real restriction and
might show to be a serious limitation, depending on the application, as it makes it for
example impossible to express the fact, that we would expect biclusters to lie along the
diagonal of the matrix (whether this is a sensible assumption, largely depends on the
problem at hands). The model then looks as follows:

zO |αO ∼ CRP(αO)

zF |αF ∼ CRP(αF )

πO |β, zO ∼ Dir(πO|λO)

πF |β, zF ∼ Dir(πF |λF )

µr |πO ∼ Mult(µr|πO, 1)

νr |πF ∼ Mult(νr|πF , 1)

xi(r) |zO, µr ∼ Mult(xi(r)|θOµr , 1)

yj(r) |zF , νr ∼ Mult(yj(r)|θFνr , 1).

(5.2)

We illustrate this model in Figure 5.6. The variables λO and λF are similarly defined
as in the ISBM:

λOµ = βmO
µ and λFν = βmF

ν .

To understand the limitations of this model better, let’s consider the following toy
problem with 4 biclusters. Assume we are considering a matrix of dimensions N × d
(with a total count R; N and d a multiple of 2), with two object clusters of size N/2
each and two feature clusters of size d/2 each. The joint distribution of the different
biclusters is given in Table 5.1.

F1 F2

O1 0.5 0
O2 0 0.5

Table 5.1: Joint distribution of the biclusters for the toy example.

When R is large, we would expect each object to occur about R/N times and each
feature about R/d times. Both, the object and feature clustering will then result in one
cluster each, as there is apparently no difference for the occurrence of the xi and yj ,
separately, although there is a huge difference in the co-occurrence of (xi, yj). This thus
leads to a biclutering spanning over the whole matrix which is clearly not what we would
expect. This toy example nicely demonstrates the problems associated with assuming a
factorized distribution for the clusters when this is not justified by the data.
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R

xi(r) yj(r)

πO πF

β

µr νr

zF

αF

zO

αO

Figure 5.6: The factorized infinite symmetric biclustering model.

We won’t consider this model any further, due to its limitations and its reduction to
two instances of standard clustering.

5.1.2 Infinite asymmetric biclustering model

So far we’ve assumed that the biclustering problem is inherently symmetric: even though
the functional forms of the probabilities involved, might differ, we sample for each draw
a new object and feature. While this is arguably, the right approach for general biclus-
tering, let’s consider an important special case where prior knowledge about the data
is available. Let’s go back to the aforementioned problem of biclustering images: here,
another model might be more appropriate, as the number of draws per object is constant
(as these are the statistics of an image patch of fixed size, say 9 × 9 = 81 pixels) and
we have a Multinomial model for the features (the colors) of an object. We could then
instead consider the infinite asymmetric biclustering model (IABM):

1. zO |αO ∼ CRP(αO)

2. zF |αF ∼ CRP(αF )

3. πF
µ |β, zF ∼ Dir(πF

µ |λF ) for µ = 1, . . . , NO
C

4. For each of the zOn , repeat M times:

a) νr |πF
zOn

∼ Mult(νr|πF
zOn
, 1)
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b) xi(r) |n ∼ δn(i)

c) yj(r) |zFνr ∼ Mult(yj(r)|θFνr , 1).

We introduced a mixture vector πF
µ for each object cluster µ. Here M is the number of

draws per object, which is assumed to be constant and r is assumed to be increased by
one for each newly sampled observation. Note that for the object clustering we assume
a standard (infinite) mixture model. The model is asymmetric, as we think of the data
generation as sequentially creating objects for n = 1, . . . , N , assigning them to an object
cluster, and based on this decision sample the feature clusters. The asymmetric model
can be illustrated by means of a graphical model, as shown in Figure 5.7.

N
M

∞

xi(r) yj(r)

πF
µ

β

νr

zF

αF

zO

αO

Figure 5.7: The asymmetric biclustering model. We’ve chosen to illustrate the gener-
ation of the πF

µ for µ = 1, . . . , NO
C by a plate with ∞ replications, to not

introduce a dependence on the object clustering; this is similar to what we
did in the stick breaking representation.

Under the assumption that each object has the same number of draws, this model is
very similar to the ISBM. The model is inspired by the asymmetric clustering model
(ACM) [Puzicha et al., 1999]. Arguably the model introduced here is, due to its asym-
metric formulation, more like a feature selection approach than a general biclustering
algorithm.

71



5 Nonparametric Bayesian Biclustering

5.2 Existing nonparametric biclustering models

The models above introduced nonparametric approaches for biclustering. While the
models gave important insights, they are not yet very useful for an actual algorithm,
due to their complexity, we will tackle this problem later on. Let us however, first
compare the models to two nonparametric methods, that have already been proposed in
the literature. The general idea of using two Chinese restaurant processes for the object
and feature clustering was first proposed in [Kemp et al., 2006]. The authors use the
following generative model, which they call the infinite relational model (IRM):

zO |αO ∼ CRP(αO)

zF |αF ∼ CRP(αF )
Θµ,ν |β ∼ Beta(Θµ,ν |β, β)

Xi,j |Θ,zF ,zO ∼ Bernoulli(ΘzOi ,zFj
).

In the notation of the previous section this is a symmetric approach. It is however re-
stricted to binary relationships, i.e. does a Siamese cat eat meat? The IRM is similar to
the ISBM; however as it only considers binary relations, we don’t have to fulfill normal-
ization constraints of the parameter Θ (the comparable parameter was called Π in the
ISBM), which simplifies things a lot but restricts the model to binary data.

The problem of generalizing the IRM to arbitrary count data was considered by Kuri-
hara et al. [2006, 2007a]; they propose a new model, which takes into account the
frequency of a relation and which they thus call the frequency-based infinite relational
model (FIRM). The model is given by the following generative process:

zO |αO ∼ CRP(αO)

zF |αF ∼ CRP(αF )
Θµ,ν |β ∼ Beta(Θµ,ν |β, β)

xi(r) |uO ∼ Mult(xi(r)|uO, 1)

yj(r) |uF ∼ Mult(yj(r)|uF , 1)

(xi(r), yj(r)) |Θ,zF ,zO ∼ Bernoulli(1|ΘzOi ,zFj
).

Here uO and uF denote the probabilities of drawing an object and a feature, respec-
tively. Note that in this model it is possible to draw negative counts, i.e. to decide
in the last step to not draw a co-occurrence (xi(r), yj(r)) and thus the r has not the
same meaning as in the models discussed above, as we likely need to draw more counts
than we have observations in our matrix. The authors also give a variational algorithm
for the inference of this model. In our opinion this model is still restricted, as arguably
we’re ultimately interested in modelling a non-factorized Multinomial distribution of the
biclusters, which is here approximated by a factorized Multinomial distribution of the
objects and features, made approximately non-factorized by the Bernoulli draw in the
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last step. It should be pointed out, that the IRM and FIRM were proposed for relational
data and thus the goals might differ from ours.

We now return to the biclustering models of the previous section with a special focus
towards an inference algorithm. We will first introduce an asymmetric biclustering
model that could potentially be useful for unsupervised feature selection and second we
introduce a symmetric biclustering model that is similar to the IRM and FIRM.

5.3 The infinite asymmetric biclustering model and the
Godzilla process

We assume here that we are dealing with histogram data, i.e. multinomially distributed
data and also assume that the counts per object are equal for all objects. In practice
we can achieve this by rescaling the features of the objects, which will possibly destroy
a lot of structure in the data.

Let’s assume we are given a cluster factor θ, i.e. a probability vector, and a feature
clustering vector zF , both of these vectors have the same dimension. To generate a
histogram x we would draw M times one out of the dim(θ) bins, where bin j is drawn
with probability θj :

P (x|θ,M) =
M !

x1! · · ·xd!

d∏
j=1

θ
xj

j . (5.3)

As an experiment we can augment this generative process with a feature clustering zF ;
in the end we will get the same probability distribution, however this illustrates our
approach nicely. Let’s first introduce θ̄:

θ̄ν =
d∑

j∈Fν

θj for ν = 1, . . . , NF
C .

In other words we build the sum of the elements of θ that are assigned to the same
feature cluster; we do the very same thing with x to get x̄. Like this we can now rewrite
equation (5.3) as a two-stage process:

P (x|θ,zF ,M) =
(

M !
x̄1! · · · x̄NF

C
!

NF
C∏

ν=1

θ̄x̄ν
ν

)(NF
C∏

ν=1

x̄ν !∏
j∈Fν

xj !

∏
j∈Fν

(
θj

θ̄ν

)xj
)
. (5.4)

Here Fν is the set of features, assigned to feature cluster ν (this is determined by zF ).
This generative two-stage process is valid for every partition zF of the features. As can
be readily checked, the two distributions are the same. While this might not come as
much of a surprise, this insight is important for two reasons: First, it allows us to couple
the generation of the data with the feature clustering and second, it also gives us a way to
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make certain feature clusterings more desirable than others: we could replace the second
term in equation (5.4) by say an uniform distribution among all the features assigned to
the same cluster. Uneducated feature clusterings would then have small probabilities.
We formalize this idea below.

What every sophisticated generative biclustering model needs to introduce, is a method
for combining the two clusterings. We propose to not directly use a mixture model for
the feature clustering, but rather to perturb the cluster components according to this
clustering. The perturbation essentially maps the cluster factors θµ, of dimensionality
d, to a low dimensional space, of which the complexity is given by the number of feature
clusters NF

C . Thereafter we immediately map the result back to the high dimensional
space to get θ̃µ. This can be seen as a lossy compression/decompression and is related
to the information bottleneck as introduced in [Tishby et al., 1999].

Formally, the elements of the decryption θ̃ are given by

θ̃j = θ̄zFj
/mF

zFj
for j = 1, . . . , d.

Here mF
ν denotes the number of features assigned to feature cluster ν. We will refer to

this process as the Godzilla process (as it essentially flattens the “skyline” of the distri-
bution). The steps described above are summarized in Figure 5.8.

0.2
θ

0.5
θ̄

0.2
θ̃

compress

decompress

Figure 5.8: The Godzilla process as used by our biclustering model. The cluster assign-
ments are encoded by the colors. Note that the distribution among the same
colored elements of θ̃ is flat, which was not yet the case for θ.

74



5.3 The infinite asymmetric biclustering model and the Godzilla process

We are now ready to introduce a different perspective of the IABM: we use a Chinese
restaurant process prior for both clusterings. Furthermore, we assume a standard infinite
mixture model for the objects which is additionally augmented by a feature clustering
that compresses the object cluster components as discussed above. The model is shown
in Figure 5.9.

N

xn

zO

αO

Θ

βαF

zF

Figure 5.9: Infinite asymmetric biclustering model with the Godzilla process.

The nonparametric generative process for the data looks as follows:

1. Draw a feature clustering zF : zF |αF ∼ CRP(αF ).

2. Draw θµ |β ∼ G0(λ) for µ = 1, 2, . . .

3. Draw an object clustering zO: zO |αO ∼ CRP(αO).

4. For the n-th object: Draw xn | zOn ,zF ,Θ ∼ Mult(xn|θ̃zOn
).

Here we collected all the cluster components in the (infinite) matrix Θ and λj = β for
j = 1, . . . , d.

Theorem 5.2. The process given above is equivalent to the IABM in Figure 5.7.

Proof. The distribution of the clusterings zO and zF is the same and thus the distribu-
tion of the xi(r) is the same. Let’s switch the notation to histograms xn and consider the
likelihood of the data, conditioned on the latent variables. For the IABM in Figure 5.7
we get:

P (xn|zO,zF , {πµ}∞µ=1) = Mult(xn|φ,M),

where φj = πzOn ,zFj
/mF

zFj
is the probability of bin j, which is given by the zFj -th entry

of the cluster component to which histogram xn is assigned, divided by the number of
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features assigned to this feature cluster. The likelihood for the model in Figure 5.9 is
given by:

P (xn|Θ,zO,zF ) = Mult(xn|θ̃zOn
,M),

where θ̃zOn ,j = θ̄zOn ,zFj
/mF

zFj
for j = 1, . . . , d, is the cluster component θzOn

perturbed

by the Godzilla process. We thus only need to show that θ̄zOn
and πF

zOn
have the same

distribution, the distribution is independent of the object assignment. We have

θ̄ ∼ Dir(θ̄|λ′),

and
π ∼ Dir(π|λ′),

with λ′ν = βmF
ν . Which proves our claim. For θ̄, we used the partition property of the

Dirichlet distribution: let A1, . . . ,Ak be a partition of the domain X = {1, 2, . . . , NF
C }

then we have:
(θA1 , . . . , θAk

) ∼ Dir(β(A1), . . . , β(Ak))

where β(Ai) =
∑

xj∈Ai
βi for j = 1, . . . , NF

C ; in our case we use a uniform prior β and
thus we get β(Ai) =

∑
xj∈Ai

β

In the Godzilla-IABM representation above, it is now straigthforward to implement a
collapsed Gibbs sampler.

5.4 The infinite symmetric biclustering model and the Godzilla
process

In this section we discuss a symmetric biclustering model better suited for Gibbs sam-
pling which shows to be equivalent to the ISBM, we will again use the Godzilla process.
Let’s consider the following generative process:

zO |αO ∼ CRP(αO)

zF |αF ∼ CRP(αF )
Θ |β ∼ Dir(Λ)

X |Θ,zF ,zO ∼ Mult(Θ̃, R)

(5.5)

Here Θ̃i,j = Θ̄zOi ,zFj
/(mzOi

mzFj
), Θ̄µ,ν =

∑
i∈Oµ

∑
j∈Fν

Θi,j and Λi,j = β. The Dirichlet
and Multinomial distribution are assumed to be defined on matrices, this is equivalent
to vectorizing the matrices. The prior Λ, as well as Θ have dimension N × d, Θ̄ has
dimension NO

C ×NF
C and Θ̃ has again dimension N × d. As in the previous section, we

use again the Godzilla process, but here in 2D: We perturb the Multinomial parameter
Θ for the entire matrix X by the two clusterings. The difference being, that here we
use this idea for the generation of X, while before in the asymmetric case we only used
the feature clustering in this way and for the object clustering we assumed a standard
infinite mixture model. The process is shown in Figure 5.10.
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X

zO

αO

Θ

βαF

zF

Figure 5.10: Infinite symmetric biclustering model with the Godzilla process.

Theorem 5.3. Model (5.5) is equivalent to the ISBM in (5.1).

Proof. In the ISBM the likelihood of the data conditioned on zO, zF and Π is multino-
mially distributed:

P (X|zO,zF ,Π) = Mult(X|Φ, R),

where Φi,j = ΠzOi ,zFj
/(mO

zOi
mF

zFj
). Similarly, for the model in (5.5) the likelihood of the

data is given by:
P (X|zO,zF ,Θ) = Mult(X|Θ̃, R),

where Θ̃i,j = Θ̄zOi zFj
/(mzOi

mzFj
) and Θ̄ =

∑
i∈Oµ

∑
j∈Fν

Θi,j . We thus only need to show

that Θ̄ and Π have the same distribution, as the two clusterings zO and zF have the
same distribution in both models. The distribution of Θ̄ is given by:

Θ̄ ∼ Dir(Θ̄|Λ′),

and
Π ∼ Dir(Π|Λ′),

where Λ′
µ,ν = βmO

µm
F
ν . Which proves our claim. We used the partition property of the

Dirichlet distribution as before in the asymmetric case.

We now compute the probabilities needed for a Gibbs sampler for the model above.
Let’s consider assigning the i-th object to object cluster µ, the probability is given by:

P (zOi = µ|Θ,X,zO−i,z
F ) =

N∏
k=1

d∏
j=1

(
Θ̃k,j|zOi =µ,zO−i,z

F ,Θ

)Xk,j

,

where Θ̃k,j|zOi =µ,zO−i,z
F ,Θ is the probability of bin (k, j) after applying the Godzilla pro-

cess to a given object and feature clustering, specified by zOi = µ,zO−i and zF and the
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unperturbed parameter Θ. Equivalently for assigning the j-th feature to feature cluster
ν:

P (zFj = ν|Θ,X,zF−j ,z
O) =

N∏
i=1

d∏
k=1

(
Θ̃i,k|zFj =ν,zF−j ,zO,Θ

)Xi,k

.

Note that these probabilities are dependent on all the counts of X, which is possibly very
large. However, in an implementation, with an appropriate caching of the probabilities
involved, one does not need to recompute everything from scratch, as only few terms
change.

This still assumes that we know the probabilities of the different bins, which are given
by Θ, however, in an actual implementation this needs to be inferred from the data, too.
We can compute a MAP estimate as follows:

Θ̃MAP
i,j = Θ̄MAP

zOi ,zFj
/(mO

zOi
mF

zFj
),

for the Godzilla-compressed bins with

Θ̄MAP
µ,ν ∝

∑
i∈Oµ

∑
j∈Fν

Xi,j + Λi,j .

In a Gibbs sampler for the inference, we can go through the objects and features in turn
and sample the assignments according to the probabilities as given above. In addition
to the probabilities for assigning an object or feature to an already existing cluster,
we also compute the probability of the data, assuming the object/feature is placed in
its own cluster. This probability is then weighted with the concentration parameter
of the Dirichlet process, while the other probabilities are weighted by the number of
objects/features assigned to the other clusters, just like in the standard Dirichlet process.

5.5 Evaluation

In this section we evaluate the IABM and ISBM as introduced in the preceding sections.
For the asymmetric algorithm we preprocessed all of our data, such that we have the
approximately same number of counts per object. For the symmetric algorithm we used
a different preprocessing step: we “normalize” the entire matrix, such that it contains
a fixed total count. As one can already see, we potentially destroy a lot of data in the
asymmetric case, as we might completely change the between-objects statistics. The
algorithms were, if not stated otherwise, initialized with 5 object clusters and d feature
clusters, where d is the number of features.

5.5.1 Osherson dataset – A giant panda swimming in the arctic ocean?

In analogy to [Kemp et al., 2006], we use the animal-feature matrix from [Osherson et al.,
1991]. This data has dimension 50×85 and was collected by a psychological experiment:
different animals (Siamese cat, killer whale) are given feature ratings (arctic, eats meat)
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on a scale from 0 to 100. The goal is then to identify animal clusters (e.g. humpback
whale and killer whale should be in the same cluster) and feature clusters (e.g. ocean
and water should be in the same cluster).

This dataset is interesting for two reasons: First, the data allows for an easy and
intuitive understanding of the result and second, it is real data and not synthetic data.
The data set is however not well suited for a thorough analysis, as we are not given a
ground truth clustering.
Charles Kemp kindly forwarded us the original data. In their paper [Kemp et al., 2006]
they use a thresholded version of the data to get a binary data matrix. As both, our
asymmetric and symmetric biclustering algorithms are designed for count data we used
the original data, which was additionally preprocessed as discussed above.

Both algorithms consistently identified 11 or 12 object clusters, we show the results
of a test run in Figure 5.11 and Figure 5.12, respectively. The model order selection is
shown in Figure 5.13.

Figure 5.11: Asymmetric biclustering (IABM) of the Osherson data set: input to the
left and output to the right.

The number of object clusters does not change a lot for the algorithms after a few
iterations of the Gibbs sampler, this is different for the feature clustering, which is more
dynamic and changes more frequently. Two interesting object clusters are apparently
the “pig” and “antelope” cluster: they were sometimes separated by the algorithms and
sometimes merged. In general we got the impression that the object clustering of the
symmetric algorithm is slightly inferior.

The partitioning of the animals, as returned by the two algorithms is shown in Ta-
ble 5.2. The results mostly match the few results published in [Kemp et al., 2006] and
both, the symmetric and asymmetric algorithms, give similar results. This however,
also largely depends on the concentration parameters, which were set such that the two
algorithms, return similar clusterings of the objects.
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Figure 5.12: Symmetric biclustering (ISBM) of the Osherson data set: input to the left
and output to the right.
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(a) asymmetric algorithm (IABM)
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(b) symmetric algorithm (ISBM)

Figure 5.13: Number of object clusters NO
C and feature clusters NF

C as inferred by a
Gibbs sampler for the two nonparametric models.
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cluster asymmetric symmetric
1 tiger, leopard, fox, wolf, weasel,

bobcat, lion
tiger, leopard, fox, wolf, bobcat,
lion

2 antelope, horse, moose, ox, sheep,
giraffe, buffalo, zebra, deer, pig,
cow

antelope, horse, giraffe, zebra,
deer

3 dalmatian, Persian cat, Ger-
man shepherd, Siamese cat, chi-
huahua, collie

dalmatian, Persian cat, Ger-
man shepherd, Siamese cat, chi-
huahua, weasel, collie

4 killer whale, blue whale, hump-
back whale, seal, walrus, dolphin

killer whale, seal, walrus, dolphin

5 beaver, otter beaver, otter
6 skunk, mole, hamster, squirrel,

rabbit, rat, mouse, raccoon
skunk, mole, hamster, squirrel,
rabbit, rat, mouse, raccoon

7 hippopotamus, rhinoceros, ele-
phant

hippopotamus, rhinoceros, ele-
phant

8 spider monkey, gorilla, chim-
panzee

spider monkey, gorilla, chim-
panzee, giant panda

9 grizzly bear, polar bear grizzly bear, polar bear
10 bat bat
11 giant panda moose, ox, sheep, buffalo, pig,

cow
12 blue whale, humpback whale

Table 5.2: The two animal clusterings inferred by the IABM and ISBM. The clusters
are reordered, to show the overlap. Differences are shown in italic.
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cluster asymmetric symmetric
1 blue, strainteeth, tusks, plank-

ton, skimmer
blue, strainteeth, tusks, plank-
ton, skimmer

2 fish, arctic, coastal fish, arctic, coastal
3 flippers, ocean flippers, ocean
4 big, strong big, strong
5 swims, water swims, water
6 hands, bipedal, tree hands, bipedal, tree
7 walks, quadrapedal, ground walks, quadrapedal, ground
8 paws, claws paws, claws
9 orange, red, yellow, flys, desert,

cave
orange, red, yellow, stripes, long-
neck, desert

10 hooves, horns, grazer hooves, horns
11 meatteeth, meat, hunter, stalker meatteeth, meat, hunter, stalker,

fierce
12 nocturnal, hibernate, scavenger nocturnal, hibernate, scavenger,

cave
13 chewteeth, smelly, group chewteeth, smelly, vegetation,

timid, group
14 brown, tail, fast, active, new-

world
black, brown, furry, tail, fast, ac-
tive, newworld, oldworld

15 buckteeth, weak small, pads, buckteeth, weak,
forager, forest

16 hairless, toughskin gray, hairless, toughskin, bulbous,
slow, inactive

17 plains, fields grazer, plains, fields
18 stripes, hops, tunnels, insects flys, hops, tunnels, insects
19 bush, mountains longleg, bush, jungle, mountains
20 lean, muscle, fierce lean, muscle, agility, smart, soli-

tary, nestspot
21 patches, spots white, patches, spots, domestic

Table 5.3: The two feature clusterings inferred by the IABM and ISBM. The clusters
are reordered, to show the overlap. Differences are shown in italic; we did
not include the additional clusters of the asymmetric algorithm because of
space constraints.
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5.5.2 Toy example 1 – “Step” pattern

As a first toy example we consider a dataset with 6 object clusters, each containing 60
objects, and 10 feature clusters, each containing 5 features. The data was created as
follows: we define a probability vector for the first object cluster over the 10 feature
clusters and use this vector for the other object clusters, where we however change the
element positions to get a steps-pattern. We then sequentially sample the objects by
assigning them to a cluster and sample a histogram according to its cluster component.
In the end we randomly permute the columns and rows of the data matrix we generated.
We initialized both of the algorithms with 1 object cluster and with d feature clusters.

The results of both algorithms are shown in Figure 5.14 and the development of the
number of clusters in Figure 5.15.

Figure 5.14: Biclustering of the “steps” data set: input to the left and output to the
right.
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Figure 5.15: Gibbs sampler for the biclustering of the “steps” data set: the development
of the number of object clusters NO

C and number of feature clusters NF
C .
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Both algorithms converge very fast and result in the same (correct) biclustering. The
data set is inherently asymmetric and thus it surprises that the symmetric algorithm
performs so well.

5.5.3 Toy example 2 – Normalization

As a next experiment we consider how the algorithms perform on a synthetic data set,
which is special in that two feature clusters have the same distribution over the objects
(with probability 0.9 it is from object cluster one, with probability 0.1 from object
cluster two). Unsophisticated algorithms might merge the two clusters for this reason,
which however does not happen with our algorithms. The data was again asymmetrical
generated. See Figure 5.16 and Figure 5.17 for the results.

Figure 5.16: Biclustering of the normalization problem data set: input to the left and
output to the right.
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Figure 5.17: Biclustering of the normalization problem data set: the development of the
number of object clusters NO

C and number of feature clusters NF
C .

Again, both algorithms converge within a few iterations to the correct solution.
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5.5.4 Data sampled from the symmetric biclustering model

So far all of the data sets were essentially asymmetric. Here we now consider data sam-
pled from the symmetric biclustering model. We would expect the symmetric algorithm
to perform better than the asymmetric one. For the generation of the synthetic data, we
first generate an object and feature clustering and then sample a discrete distribution
over the just generated biclusters from a Dirichlet distribution.

One problem is now the computation of the error of the inferred biclustering for a
comparison: although we know the ground-truth biclustering; for a small prior belief
many of these biclusters will have a probability Πµ,ν of almost zero. It might thus very
well happen that almost all draws are only from one bicluster, which our algorithm will
identify, but it will also merge all the “zero bins” into as few biclusters as possible.
Computing the assignment error of the inferred biclustering compared to the ground-
truth with the Hungarian method will possibly result in a large error, because there is
no way for our algorithm to find a difference between the bins as all have zero counts.
As a simple heuristic we also computed the assignment error of the inferred biclustering
compared to a biclustering with all the zero rows/columns in a separate cluster as the
ground-truth. We then chose the error as the minimum of the two errors. This heuristic
works well for really small prior beliefs, but seems to introduce some artifacts for mod-
erately small prior beliefs, as first additional biclusters evolve and thus have nonzero
counts, but our biclustering algorithm will still decide to merge these bins with the zero
biclusters resulting in an error. The problem is illustrated in Figure 5.18.

Figure 5.18: The problem with the assignment error computation: To the left in the
ground-truth biclustering we have many biclusters with zero counts, to the
right in the inferred biclustering they are merged into larger biclusters. The
biclustering to the right would have a large error, although it is arguably
a good biclustering.

The results of the ISBM are shown in Figure 5.19. As we can see the error is mostly
significantly under 10%, except for very “flat” biclustering configurations, i.e. a uniform
distribution among the biclusters, which we get for large priors. Our algorithm then
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returns one bicluster spanning over the whole matrix, which is arguably the best it can
do, as there is apparently no difference in the co-occurrence in the object/feature pairs
for such data, see Figure 5.20 for an example.
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Figure 5.19: Biclustering of synthetic data from the symmetric biclustering model. The
“bump” around -8 is at least in part a consequence of the validation prob-
lem discussed above.

When we run the asymmetric algorithm on this data set we see that it works well
in the prior range around −5. Non-surprisingly it results in one bicluster too for very
uniform biclusters. The asymmetric biclustering algorithm fails however for the very
peaked biclustering configurations when the log of the prior is smaller than −10, as it is
clearly not designed for such data.

Figure 5.20: Ground-truth biclustering to the left and a solution found by our algorithm
(only one bicluster).
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5.5.5 More synthetic data

Here, we consider one of the synthetic data sets used in [Prelić et al., 2006]. In Figure 5.21
we show two biclusterings of the noisy data sets as returned by the symmetric biclustering
algorithm.

Figure 5.21: Biclusterings of the noisy data set obtained by the symmetric algorithm.

The symmetric algorithm identifies almost always all of the clusters correctly, as can
be seen in Figure 5.22. We used the same αF and αO for all of the noisy data sets of
scenario 1.
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Figure 5.22: Average error rate of the two clusterings computed by the symmetric al-
gorithm for the noise data set.
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5.6 Discussion, open problems and future directions

In this chapter we introduced a symmetric (ISBM) and an asymmetric (IABM) biclus-
tering model. While the asymmetric model showed to lead to good results on some
toy data sets and might be especially interesting for unsupervised feature selection, the
symmetric algorithm does arguably capture the biclustering idea better: it handles both,
the objects and features, in a completely symmetric way and it also copes well with data
where only a few objects and features show co-occurrence. Our two biclustering algo-
rithms are nonparametric and do not assume the number of biclusters is known a-priori.

Selecting good parameters αO, αF and β for a given data set still involves parame-
ter tuning performed by a human. As the prior and the two concentration parameters
measure in parts similar aspects of the biclustering (a small prior β leads to only few
biclusters as many biclusters have probability zero and are merged) it would be inter-
esting to see, whether we could constraint the parameters.

The results of our nonparametric algorithms showed to be promising, but further
analysis and experiments are needed to give a quantitative measure of its prediction
performance. Also, a comparison of our symmetric algorithm to the IRM and the FIRM
is needed for identifying the weaknesses and strengths of the models; a comparison
with other non-Dirichlet process based methods would also be highly desirable. We
would expect our model to perform better than the IRM, as it also takes into account
the frequency of a co-occurrence, just like the FIRM; a comparison with the FIRM is
harder, as both methods employ different approaches for handling non-binary data. Our
approach is equivalent to an infinite mixture model for the biclusters, allowing for a non-
factorized distribution of the biclusters, and for each draw really generates a count in
the data matrix. In the FIRM model the data is explained by a factorized Multinomial
distribution for the objects and features and a Bernoulli draw that decides whether to
generate a count; like this negative counts are possible which essentially also results
in a non-factorized Multinomial model. We feel that our model is conceptually nicer,
however that being said, so far we were not yet able to derive a variational algorithm
for the inference, which was given for the FIRM. Variational methods would be needed
for applying our algorithm to large-scale data sets, such as natural language processing
or microarray data.
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σ-field, 5

ACM, see asymmetric clustering model
AIC, see Akaike information criterion
Akaike information criterion, 20, 40
algebra, 5
asymmetric clustering model, 19

bag of words, 8
base measure, 23
Bayesian information criterion, 20, 40
Bernoulli distribution, 8
Beta distribution, 9
BIC, see Bayesian information criterion
bicluster, 63
biclustering, 63
biclustering model

factorized infinite symmetric, 69
infinite asymmetric, 70, 73
infinite symmetric, 67, 76

bipartite graph, 65
Borel σ-field, 5

Chinese restaurant process, 25
clustering, 1, 17
concentration parameter, 23
conjugate prior, 12
continuous, 6

DeFinetti’s representation theorem, 7
digamma function, 34
Dirichlet

distribution, 9, 11, 14
process, 1, 22
process mixture model, 26

discrete, 6
distribution, 6

DP, see Dirichlet process

EM, see expectation maximization
evidence, 13
exchangeable, 7
expectation maximization, 18
exponential family, 9, 15

feature selection, 66
field, 5
finite mixture model, 17

Gamma function, 9
Gaussian, 7, 10, 12, 16
Gaussian mixture model, 18
generative models, 23
Gibbs sampling, 21, 29
GMM, see Gaussian mixture model
Godzilla process, 74
graphical models, 21

Hubert’s Γ index, 46

induced measure, 6
inference, 21, 29

Jaccard’s index, 46

likelihood, 12

MDP, see Dirichlet process mixture model
mean-field, 33
measurable function, 6
measurable space, 6
measure, 5, 6
measure space, 6
model order selection, 1, 17
MOS, see model order selection
Multinomial distribution, 8, 11, 15
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normal distribution, see Gaussian

pólya urn scheme, 25
partition function, 10
posterior, 13
prior, 12
prior belief, 9
probability

density function, 6
mass function, 6
space, 6

Rand’s index, 46
random quantity, 6
random variable, 6

simplex, 8
stick breaking construction, 24
sufficient statistics, 10

variational inference, 21, 32
variational parameters, 33
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