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 popular approaches: 

 stochastic subgradient descent 
 pros: online! 
 cons: sensitive to step-size; don’t know when to stop 

 cutting plane method (SVMstruct) 
 pros: automatic step-size; duality gap 
 cons: batch! -> slow for large n 

 our approach: block-coordinate Frank-Wolfe on dual 
-> combines best of both worlds: 

 online! 
 automatic step-size via analytic line search 
 duality gap 
 rates also hold for approximate oracles 
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 Properties:   O(1/T) rate 
 sparse iterates 
 get duality gap         for free 
 rate holds even if linear 

subproblem solved 
approximately 
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loss-augmented decoding 

structural SVM: 



Experiments 

OCR dataset CoNLL dataset 



Conclusion 

 new block-coordinate variant of Frank-Wolfe 
algorithm 
 same convergence rate but with cheaper iteration cost 

 applied to structural SVM, yields: 
 online algorithm 
 optimal step-size computed in close form 
 duality gap 
 rates hold with approximate oracles 
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