Block-Coordinate Frank-Wolfe for Structural SVMs

Martin Jaggia

Simon Lacoste-Julien b

(no parameter tuning)

 $g(\boldsymbol{\alpha})$

(e.g. as a stopping criterion)

Machine Learning Laboratory,

ETH Zurich. Switzerland

Short Summary

Motivation

Despite their wider applicability, optimization of structural SVMs remains challenging.

Contributions

New **block-coordinate** variant of the classic Frank-Wolfe algorithm

Giving a new simple online algorithm for structural SVMs, with primal-dual convergence rate, outperforming existing solvers in practice

(for convex optim. with block-separable constraints)

Structural SVM

Structured Prediction

Goal: Given a joint "structured" feature map $\phi: \mathcal{X} imes \mathcal{Y}
ightarrow \mathbb{R}^d$, construct a good linear classifier of the form

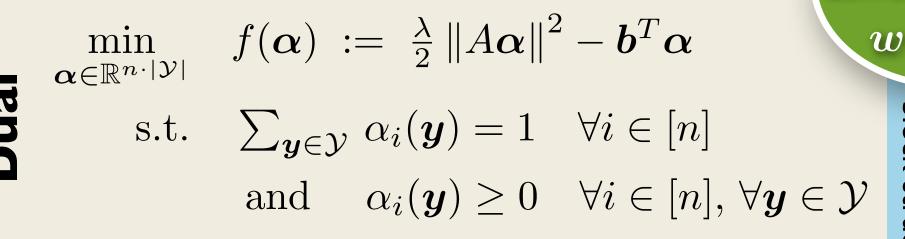
II II II II II II $h_{m{w}}(m{x}) = rgmax \langle m{w}, m{\phi}(m{x}, m{y})
angle$

Large margin separation

maximization oracle

(loss augmented decoding) = structured hinge loss =: $\psi_i(y)$

'primal-dual' correspondence



Challenge: exponential # of variables

 $oldsymbol{b} := \left(rac{1}{n}L_i(oldsymbol{y})
ight)_{i \in [n], oldsymbol{y} \in \mathcal{Y}}$ $A := \left\{ rac{1}{\lambda n} oldsymbol{\psi}_i(oldsymbol{y}) \in \mathbb{R}^d \mid i \in [n], oldsymbol{y} \in \mathcal{Y}
ight\}$

Mark Schmidt b

The **optimal step-size** can

be computed in closed-form

Allows use of approximate

maximization oracles

(weakest / most general oracle)

Duality gap guarantee,

Patrick Pletscher of

Frank-Wolfe (or conditional gradient)

Constrained Convex Optimization

over a compact domain

 $\min_{\boldsymbol{\alpha} \in \mathcal{M}} f(\boldsymbol{\alpha})$

Algorithm 1 Frank-Wolfe Let $\boldsymbol{\alpha}^{(0)} \in \mathcal{M}$ for $k = 0 \dots K$ do Compute $s := \underset{s' \in \mathcal{M}}{\operatorname{argmin}} \left\langle s', \nabla f(\boldsymbol{\alpha}^{(k)}) \right\rangle$ Let $\gamma := \frac{2}{k+2}$, or find the optimal γ Update $\boldsymbol{\alpha}^{(k+1)} := (1 - \gamma)\boldsymbol{\alpha}^{(k)} + \gamma \boldsymbol{s}$

Idea: Minimize a *linear* approximation

Convergence:

after k steps.

(also in duality gap, and with inexact subproblems)

Duality Gap

 $g(\alpha)$ = efficient certificate for approximation quality

Sparse Iterates!

Constant bounded by the Lipschitz constant L_f of the gradient, $C_f \leq L_f \operatorname{diam}(\mathcal{M})^2$

Optimization of the Structural SVM Dual

Batch Frank-Wolfe:

Duality gap $\leq \varepsilon$ after $O\left(\frac{R^2}{\lambda \varepsilon}\right)$ iterations (iteration cost: n oracle calls)

Relation with Batch Subgradient

Can interpret batch subgradient (in the primal) as classic Frank-Wolfe (in the dual)

Relation with Cutting Plane

Can interpret cutting plane (SVM^{struct}, bundle methods) as a Frank-Wolfe variant, giving a simpler convergence proof

Block-Coordinate Frank-Wolfe:

Duality gap $\leq \varepsilon$ after $O\left(\frac{R^2}{\lambda \varepsilon}\right)$ iter. (iteration cost: one oracle call)

Relation with Stochastic Subgradient (SGD)

Same cheap iteration cost, but we have stronger primal-dual guarantees, more robustness, no step-size tuning, and faster in experiments

Related Work

Table 1. Convergence rates given in the number of calls to the oracles for different optimization algorithms for the structural SVM objective (1) in the case of a Markov random field structure, to reach a specific accuracy ε measured for different types of gaps, in term of the number of training examples n, regularization parameter λ , size of the label space $|\mathcal{Y}|$, maximum feature norm $R := \max_{i,y} \|\psi_i(y)\|_2$ (some minor terms were ignored for succinctness). Table inspired from (Zhang et al., 2011). Notice that only stochastic subgradient and our proposed algorithm have rates independent of n.

Optimization algorithm	Online	Primal/Dual	Type of guarantee	Oracle type	# Oracle calls
dual extragradient (Taskar et al., 2006)	no	primal-"dual"	saddle point gap	Bregman projection	$O\left(\frac{nR\log \mathcal{Y} }{\lambda\varepsilon}\right)$
online exponentiated gradient (Collins et al., 2008)	yes	dual	expected dual error	expectation	$O\left(\frac{(n+\log \mathcal{Y})R^2}{\lambda\varepsilon}\right)$
excessive gap reduction (Zhang et al., 2011)	no	primal-dual	duality gap	expectation	$O\left(nR\sqrt{\frac{\log \mathcal{Y} }{\lambda\varepsilon}}\right)$
BMRM (Teo et al., 2010)	no	primal	≥primal error	maximization	$O\left(\frac{nR^2}{\lambda \varepsilon}\right)$
1-slack SVM-Struct (Joachims et al., 2009)	no	primal-dual	duality gap	maximization	$O\left(\frac{nR^2}{\lambda\varepsilon}\right)$
stochastic subgradient (Shalev-Shwartz et al., 2010)	yes	primal	primal error w.h.p.	maximization	$\tilde{O}\left(rac{R^2}{\lambda arepsilon} ight)$
this paper: stochastic block-coordinate Frank-Wolfe	yes	primal-dual	expected duality gap	maximization	$O\left(\frac{R^2}{\lambda \varepsilon}\right)$ Thm. 3

Algorithm 4 BCFW for Structural SVM

Solve $\boldsymbol{y}_i^* := \operatorname{argmax} \ H_i(\boldsymbol{y}; \boldsymbol{w}^{(k)})$

Let $\gamma := \frac{2n}{k+2n}$, or find the optimal γ

Update $\mathbf{w}_i^{(k+1)} := (1-\gamma)\mathbf{w}_i^{(k)} + \gamma \mathbf{w}_s$ Update $\mathbf{w}^{(k+1)} := \mathbf{w}^{(k)} + \mathbf{w}_i^{(k+1)} - \mathbf{w}_i^{(k)}$

Let $m{w}^{(0)} := m{w}_i{}^{(0)} := m{0}$

Let $oldsymbol{w_s} := rac{1}{\lambda n} oldsymbol{\psi}_i(oldsymbol{y}_i^*)$

for $k = 0 \dots K$ do

end for

Pick $i \in_{u.a.r.} [n]$

Block-Coordinate Frank-Wolfe

Problem: Minimize a convex function over block-separable compact constraints

$$\min_{oldsymbol{lpha} \in \mathcal{M}^{(1)} imes \ldots imes \mathcal{M}^{(n)}} f(oldsymbol{lpha}) \ oldsymbol{lpha} = (oldsymbol{lpha}_{(1)}, \ldots, oldsymbol{lpha}_{(n)})$$

Idea: Combine Coordinate Descent with cheaper Frank-Wolfe steps



(pick one single block at random, and perform a Frank-Wolfe step affecting only this block)

Algorithm 3 Block-Coordinate Frank-Wolfe

Let $\boldsymbol{\alpha}^{(0)} \in \mathcal{M} = \mathcal{M}^{(1)} \times \ldots \times \mathcal{M}^{(n)}$ for $k = 0 \dots K$ do Pick $i \in_{u.a.r.} [n]$

Find $s_{(i)} := \operatorname{argmin} \left\langle s'_{(i)}, \nabla_{(i)} f(\boldsymbol{\alpha}^{(k)}) \right\rangle$

Let $\gamma := \frac{2n}{k+2n}$, or find the optimal γ Update $\boldsymbol{lpha}_{(i)}^{(k+1)} := \boldsymbol{lpha}_{(i)}^{(k)} + \gamma ig(\boldsymbol{s}_{(i)} - \boldsymbol{lpha}_{(i)}^{(k)} ig)$ (also in duality gap, and with **inexact** subproblems)

Convergence:

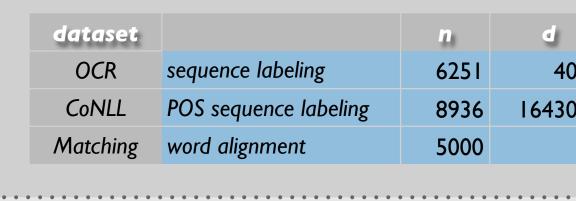
 $\mathsf{Error} \leq \frac{1}{k+2n}$

after k steps.

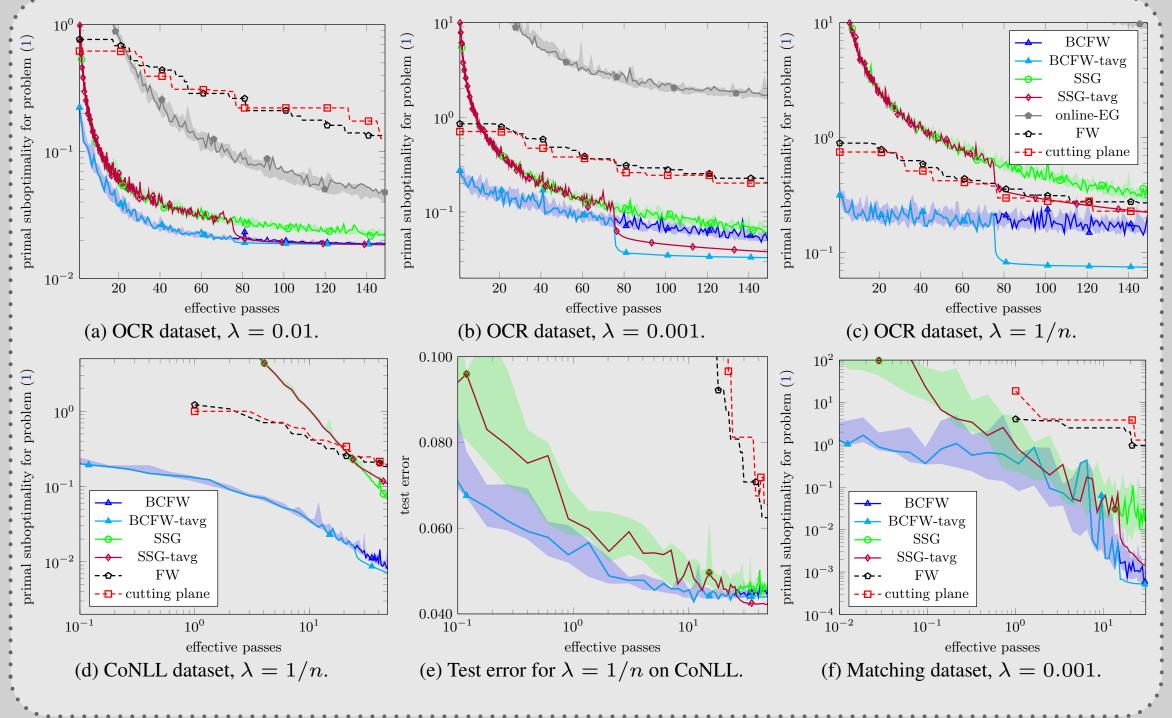
The constant C_f^{prod} can be much smaller than C_f . (For structural SVM, $nC_f^{prod} pprox C_f$)

Experimental Results

batch Frank-Wolfe (FW) and cutting plane



(tavg = tail averaging for the second half of the iterations)



comparing block-coordinate Frank-Wolfe (BCFW) to stochastic subgradient (SSG), online exponentiated gradient (EG),