Learning Low-order Models for Enforcing High-order Statistics Patrick Pletscher, Pushmeet Kohli

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Higher-order Statistics

- Standard CRF models usually trained using simple *low-order* losses.
- In real-world often more complex *higher-order* losses used for evaluation.
- Goal here: Train classifier directly with this higher-order loss.
- Our work introduces a higher-order loss for which we can train structured SVMs *exactly*.

Model

Train a predictor of the form

$$\begin{split} \mathbf{f}_{\mathbf{w}}(\mathbf{x}) &= \operatorname*{argmin}_{\mathbf{y}\in\mathcal{Y}} E(\mathbf{y},\mathbf{x},\mathbf{w}).\\ E(\mathbf{y},\mathbf{x},\mathbf{w}) &= -\langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x},\mathbf{y}) \rangle = \sum_{i\in\mathcal{V}} \psi_i(y_i,\mathbf{x};\mathbf{w}^u) + \sum_{(i,j)\in\mathcal{E}} \psi_{ij}(y_i,y_j,\mathbf{x};\mathbf{w}^p). \end{split}$$

Lower and Upper Envelopes

• Many higher order functions can be represented as:

 $f^{h}(\mathbf{y}) = \bigotimes_{q \in \mathcal{Q}} f^{q}(\mathbf{y})$

- where $\otimes = \{\max, \min\}$, and Q indexes a set of linear functions.
- min: lower envelope, max: upper envelope.
- Inference for upper envelope substantially more difficult (min-max).
- Label-count is upper envelope representable.
- Fortunately, negative sign makes loss lower envelope representable:

Max-margin Learning

The structured SVM considers the following quadratic program:

 $\min_{\mathbf{w},\boldsymbol{\xi}} \quad \frac{\lambda}{2} \|\mathbf{w}\|^2 + \sum_{n=1}^{N} \xi^n$

- s.t. $\max_{\mathbf{y}\in\mathcal{Y}} [\langle \mathbf{w}, \phi(\mathbf{x}^n, \mathbf{y}) \rangle + \Delta_{\mathbf{y}^n}(\mathbf{y})] \langle \mathbf{w}, \phi(\mathbf{x}^n, \mathbf{y}^n) \rangle \geq \xi^n \quad \forall n$ $\xi^n \geq 0.$
- Optimizes convex upper bound on misclassification error.
- Loss $\Delta_{\mathbf{v}^n}(\mathbf{y})$ measures how bad it is to predict **y** instead of \mathbf{y}^n .
- Solved by the cutting planes algorithm.
- Line 5: Loss augmented inference.

Require: $(\mathbf{x}^1, \mathbf{y}^1), \ldots, (\mathbf{x}^N, \mathbf{y}^N), \lambda, \epsilon, \Delta_{\mathbf{y}^*}(\cdot).$ 1: $S^n \leftarrow \emptyset$ for $n = 1, \ldots, N$.

- 2: repeat
- 3: for n = 1, ..., N do
- $H(\mathbf{y}):=\Delta_{\mathbf{y}^n}(\mathbf{y})+\langle\mathbf{w}, \boldsymbol{\phi}(\mathbf{x}^n, \mathbf{y})-\boldsymbol{\phi}(\mathbf{x}^n, \mathbf{y}^n)
 angle$ 4:
- 5: compute $\hat{\mathbf{y}} = \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}} H(\mathbf{y})$
- 6: compute $\xi^n = \max\{0, \max_{\mathbf{y} \in S^n} H(\mathbf{y})\}$
- if $H(\hat{\mathbf{y}}) > \xi^n + \epsilon$ then 7:
- $S^n \leftarrow S^n \cup {\hat{\mathbf{y}}}$ 8:
- $\mathbf{w} \leftarrow \text{optimize primal over } \bigcup_n S^n$ 9:
- end if 10:
- 11: **end for**
- 12: **until** no S^n has changed during iteration

Label-count Loss Augmented Inference

Obtain the pairwise minimization problem:

$$\min_{\mathbf{y},z\in\{0,1\}} E(\mathbf{y},\mathbf{x},\mathbf{w}) + 2z \left(\sum_{i\in\mathcal{V}} y_i^* - \sum_{i\in\mathcal{V}} y_i\right) + \sum_{i\in\mathcal{V}} y_i - \sum_{i\in\mathcal{V}} y_i^*$$

- Can be solved by standard graph-cut with an auxiliary variable.
- Or alternatively by two standard graph-cut calls with modified unaries.
- Former approach also works if label-count loss for several parts is desired.
- Iterative breadth-first search graph-cut leads to better performance.

Cell Segmentation

• Goal: Counting number of mitochondria cell pixels in an electroscopic image.

Loss Augmented Inference

• Need to efficiently solve the problem:

$$\min_{\mathbf{y}} E(\mathbf{y}, \mathbf{x}, \mathbf{w}) - \Delta_{\mathbf{y}^*}(\mathbf{y}).$$

- Notice the negative sign!
- We assume y_i is binary and $E(\mathbf{y}, \mathbf{x}, \mathbf{w})$ is submodular. Therefore: energy minimization in the original model is exactly solvable.

Loss Functions

- Should reflect scoring used for evaluation.
- But at the same time loss augmented inference should also be tractable!
- In practice for many segmentation problems Hamming loss is used:

$$\Delta^{hamming}_{\mathbf{y}^*}(\mathbf{y}) = \sum_{i \in \mathcal{V}} y_i \neq y_i^*.$$

Loss augmented inference has same complexity as inference for original model.

- Only modifies the unaries.
- A low-order loss. What about higher-order losses?
- Here we study the label-count loss:

• Right: Hamming loss trained model minus count-loss trained model.

x 10⁻³

Background-Foreground Segmentation

H (c: 0.077, h: 0.077) C (c: 0.037, h: 0.040) Ground-truth

H (c: 0.069, h: 0.069) C (c: 0.012, h: 0.124) Ground-truth

Conclusions

• Max-margin learning with the label-count loss can be done exactly.

• Leads to better results if only interested in the number of foreground pixels.

Train Eval		Hamming better (%)	Count better (%)
Ś	Hamming	52.1 ± 7.0	47.9 ± 7.0
4	Count	33.8 ± 8.3	66.2 ± 8.3
Q	Hamming	39.4 ± 6.1	60.6 ± 6.1
4	Count	29.6 ± 8.3	70.4 ± 8.3
Ś	Hamming	48.2 ± 11.9	51.8 ± 11.9
8	Count	32.0 ± 13.1	68.0 ± 13.1
Q	Hamming	50.0 ± 9.2	50.0 ± 9.2
8	Count	40.5 ± 14.3	59.5 ± 14.3

$$\Delta_{\mathbf{y}^*}^{count}(\mathbf{y}) = \left| \sum_{i \in \mathcal{V}} y_i - \sum_{i \in \mathcal{V}} y_i^* \right|.$$

- Useful if we are only interested in predicting the number of foreground pixels, but not their location.
- Unfortunately label-count loss no longer factorizes!

Also see Danny Tarlow's poster here at AISTATS.

References

- I. Tsochantaridis et al. (2005). "Large Margin Methods for Structured and Interdependent Output Variables". In: Journal of Machine Learning Research 6, pp. 1453–1484
- B. Taskar, C. Guestrin, and D. Koller (2003). "Max-Margin Markov Networks". In: Advances in Neural Information Processing Systems (NIPS)
- P. Kohli and M. P. Kumar (2010). "Energy Minimization for linear Envelope MRFs". In: CVPR
- A. Blake et al. (2004). "Interactive Image Segmentation Using an Adaptive GMMRF Model". In: ECCV, pp. 428–441
- A. V. Goldberg et al. (2011). "Maximum Flows by Incremental Breadth-First Search". In: ESA, pp. 457–468
- V. Lempitsky and A. Zisserman (2010). "Learning To Count Objects in Images". In: NIPS
- D. Tarlow and R. Zemel (2011). "Big and Tall: Large Margin Learning with High Order Losses". In: CVPR 2011 Workshop on Inference in Graphical Models with Structured Potentials
- D. Tarlow and R. Zemel (2012). "Structured Output Learning with High Order Loss Functions". In: AISTATS