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Higher-order Statistics

• Standard CRF models usually trained using simple low-order losses.

• In real-world often more complex higher-order losses used for evaluation.

• Goal here: Train classifier directly with this higher-order loss.

• Our work introduces a higher-order loss for which we can train structured
SVMs exactly.

Model

Train a predictor of the form

fw(x) = argmin
y∈Y

E (y, x,w).

E (y, x,w) = −〈w,φ(x, y)〉 =
∑
i∈V

ψi(yi , x;wu) +
∑

(i ,j)∈E

ψij(yi , yj, x;wp).

Max-margin Learning

The structured SVM considers the following quadratic program:

min
w,ξ

λ

2
‖w‖2 +

N∑
n=1

ξn

s.t. max
y∈Y

[〈w,φ(xn, y)〉 + ∆yn(y)]− 〈w,φ(xn, yn)〉 ≥ ξn ∀n

ξn ≥ 0.

• Optimizes convex
upper bound on
misclassification error.

• Loss ∆yn(y) measures
how bad it is to predict
y instead of yn.

• Solved by the cutting
planes algorithm.

• Line 5: Loss
augmented inference.

Require: (x1, y1), . . . , (xN, yN), λ, ε,∆y∗(· ).
1: Sn ← ∅ for n = 1, . . . ,N .
2: repeat
3: for n = 1, . . . ,N do
4: H(y):= ∆yn(y)+ 〈w,φ(xn, y)− φ(xn, yn)〉
5: compute ŷ = argmaxy∈Y H(y)
6: compute ξn = max{0,maxy∈Sn H(y)}
7: if H(ŷ) > ξn + ε then
8: Sn ← Sn ∪ {ŷ}
9: w← optimize primal over

⋃
n S

n

10: end if
11: end for
12: until no Sn has changed during iteration

Loss Augmented Inference

• Need to efficiently solve the problem:

min
y

E (y, x,w)−∆y∗(y).

• Notice the negative sign!

• We assume yi is binary and E (y, x,w) is submodular. Therefore: energy
minimization in the original model is exactly solvable.

Loss Functions

• Should reflect scoring used for evaluation.

• But at the same time loss augmented inference should also be tractable!

• In practice for many segmentation problems Hamming loss is used:

∆hamming
y∗ (y) =

∑
i∈V

yi 6= y∗i .

Loss augmented inference has same complexity as inference for original
model.

• Only modifies the unaries.

• A low-order loss. What about higher-order losses?

• Here we study the label-count loss:

∆count
y∗ (y) =

∣∣∣∣∣∣
∑
i∈V

yi −
∑
i∈V

y∗i

∣∣∣∣∣∣ .
• Useful if we are only interested in predicting the number of foreground

pixels, but not their location.

• Unfortunately label-count loss no longer factorizes!

Lower and Upper Envelopes

• Many higher order functions can be represented as:

f h(y) = ⊗q∈Qf
q(y)

where ⊗ = {max,min}, and Q indexes a set of linear functions.

• min: lower envelope, max: upper envelope.

• Inference for upper envelope substantially more difficult (min-max).

• Label-count is upper envelope representable.

• Fortunately, negative sign makes loss lower envelope representable:

∆count
y∗ (y)

∑
i∈V yic

f2(y)

f1(y)

−∆count
y∗ (y)

∑
i∈V yic

f2(y)

f1(y)
−∆capped

y∗ (y)

∑
i∈V yic

f2(y)

f1(y)

f3(y)

Label-count Loss Augmented Inference

Obtain the pairwise minimization problem:

min
y,z∈{0,1}

E (y, x,w) + 2z

∑
i∈V

y∗i −
∑
i∈V

yi

 +
∑
i∈V

yi −
∑
i∈V

y∗i .

z

yi0
1

z
0 1
0
1

0
−1

z
0 1
−c c

• Can be solved by standard graph-cut
with an auxiliary variable.

• Or alternatively by two standard
graph-cut calls with modified unaries.

• Former approach also works if
label-count loss for several parts is
desired.

• Iterative breadth-first search graph-cut
leads to better performance.

Cell Segmentation

• Goal: Counting number of
mitochondria cell pixels in
an electroscopic image.

• Right: Hamming loss
trained model minus
count-loss trained model.
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Background-Foreground Segmentation

H (c: 0.077, h: 0.077) C (c: 0.037, h: 0.040) Ground-truth

H (c: 0.069, h: 0.069) C (c: 0.012, h: 0.124) Ground-truth

PPPPPPPPPPPP
Eval

Train
Hamming better (%) Count better (%)

4/
S Hamming 52.1± 7.0 47.9± 7.0

Count 33.8± 8.3 66.2± 8.3

4/
D Hamming 39.4± 6.1 60.6± 6.1

Count 29.6± 8.3 70.4± 8.3

8/
S Hamming 48.2± 11.9 51.8± 11.9

Count 32.0± 13.1 68.0± 13.1

8/
D Hamming 50.0± 9.2 50.0± 9.2

Count 40.5± 14.3 59.5± 14.3

Conclusions

• Max-margin learning with the label-count loss can be done exactly.

• Leads to better results if only interested in the number of foreground pixels.

• Also see Danny Tarlow’s poster here at AISTATS.
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