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Abstract

We used the datasets of the NIPS 2003 challenge on feature selection as part of the practical work of an undergraduate course on
feature extraction. The students were provided with a toolkit implemented in Matlab. Part of the course requirements was that they
should outperform given baseline methods. The results were beyond expectations: the student matched or exceeded the performance
of the best challenge entries and achieved very effective feature selection with simple methods. We make available to the community
the results of this experiment and the corresponding teaching material [Anon. Feature extraction course, ETH WS 2005/2006. http://
clopinet.com/isabelle/Projects/ETH]. These results also provide a new baseline for researchers in feature selection.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the recent years, it has been recognized by the machine
learning and neural network communities that competi-
tions are key to stimulate research and bring improvement.
Several large conferences are now regularly organizing
competitions. For NIPS 2003, a competition on the theme
of feature selection, which attracted 75 participants, was
organized (Guyon et al., 2004). The outcomes of that effort
were compiled in a book including tutorial chapters and
papers from the proceedings of that workshop (Guyon
et al., 2006). The website of the challenge remains open
0167-8655/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.patrec.2007.02.014

* Corresponding author. Present address: Clopinet 955, Creston Road,
Berkeley, CA 94708, USA. Tel./fax: +1 510 524 6211.

E-mail addresses: isabelle@clopinet.com (I. Guyon), li@ifi.unizh.ch (J.
Li), tmader@student.ethz.ch (T. Mader), patrickp@student.ethz.ch (P.A.
Pletscher), scgeorg@student.ethz.ch (G. Schneider), uhrm@student.
ethz.ch (M. Uhr).
for post-challenge submissions (NIPS, 2003). Meanwhile,
another challenge on the theme of model selection has taken
place (WCCI, 2006), in which the participants were pro-
vided with a Matlab toolkit based on the Spider package
(Weston et al., 2005). All this material constitute a great
teaching resource that we have exploited in a course on
feature extraction (Anon., 2005/2006). We are reporting
on our teaching experience with several intentions:

• encouraging other teachers to use challenge platforms in
their curricula;

• providing to graduate students simple competitive base-
line methods to attack problems in machine learning;

• providing researchers in feature selection with baseline
results supported by publicly available code.

The particular theme of the class is feature extraction,
which we define as the combination of feature construction
and feature selection. In the past few years, feature extrac-
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tion and space dimensionality reduction problems have
drawn a lot of interest. More than a passing fancy, this
trend in the research community is driven by applications:
bioinformatics, chemistry (drug design, cheminformatics),
text processing, pattern recognition, speech processing,
and machine vision provide machine learning problems in
very high dimensional spaces, but often with comparably
few examples. A lot of attention was given in class to fea-
ture selection because many successful applications of
machine learning have been built upon a large number of
very low level features (e.g. the ‘‘bag-of-word’’ representa-
tion in text processing, gene expression coefficients in can-
cer diagnosis, and QSAR features in cheminformatics).
Our teaching strategy is to make students gain hands on
experience by working on large real world datasets (those
of the NIPS 2003 challenge (Guyon, 2003)), rather than
providing them with toy problems.

2. Datasets and synopsis of the challenge

The NIPS 2003 challenge included five datasets (Table 1)
from various application domains. All datasets are two-
class classification problems. The data were split into three
subsets: a training set, a validation set, and a test set. All
three subsets were made available at the beginning of the
challenge. The class labels for the validation set and the test
set were withheld. The challenge participants could submit
prediction results on the validation set and get their perfor-
mance results and ranking on-line during a development
period. The validation set labels were then revealed and
the participants could make submissions of test set predic-
tions, after having trained on both the training and the val-
idation set. For details on the benchmark design (see
Guyon et al., 2004).

The identity of the datasets and of the features (some of
which were random features artificially generated) were
kept secret during the challenge, but have been revealed
since then. The datasets were chosen to span a variety of
domains and difficulties (the input variables are continuous
or binary, sparse or dense; one dataset has unbalanced clas-
ses). One dataset (MADELON) was artificially constructed to
illustrate a particular difficulty: selecting a feature set when
no feature is informative by itself. To facilitate the assess-
ment of feature selection methods, a number of artificial
features called probes were drawn at random from a distri-
bution resembling that of the real features, but carrying no
Table 1
NIPS 2003 challenge datasets

Dataset Domain T Nfeat F þpr

ARCENE Mass spectrometry d 104 0.3
DEXTER Text classification s 2.104 0.5
DOROTHEA Drug discovery sb 105 0.5
GISETTE Digit recognition d 5000 0.5
MADELON Artificial d 500 0.9

For each dataset we show its domain of application, its type T (d = dense, s
fraction of probes in the original feature set F þprobe, the number of examples in th
class %[+], and the ratio number of training examples to number of features T
information about the class labels. A good feature selection
algorithm should eliminate most of the probes. The details
of data preparation can be found in a technical memoran-
dum (Guyon, 2003).

The distribution of the results of the challenge partici-
pants for the various datasets are represented in Fig. 1.
Using these graphs, we introduced in class the datasets in
order of task difficulty. We provided the students with
baseline methods approximately in the best tenth percentile
of the challenge entries. For the class, the students had
access to the training and validation set labels, but not
the test labels. The test set labels have not been released
to the public to keep an on-going benchmark. The students
could thus made post-challenge submissions to the web site
of the challenge (NIPS, 2003) to obtain their performance
on the test set. The students were in similar conditions as
the challenge competitors in that they did not have access
to the test labels and they had to make fewer than five sub-
missions (the limit set by the rules of the challenge). We
asked students to try to outperform the baseline method
and gave them extra credit for outperforming the best chal-
lenge entry (see Section 4).

3. Learning object package

The machine learning package we used for the class
called CLOP (Challenge Learning Object Package) is avail-
able from the website of the ‘‘performance prediction
challenge’’ (WCCI, 2006). For an introduction, see the
QuickStart guide (Amir Reza Saffari Azar Alamdari,
2006). We present in this section a high level overview of
the package.

3.1. Data and algorithm objects

The Spider package (Weston et al., 2005) on top of
which CLOP is built, uses Matlab� objects. Two simple
abstractions are used:

• data: Data objects include two members X and Y, X

being the input matrix (patterns in lines and features
in columns), Y being the target matrix (i.e. one column
of ± for binary classification problems);

• algorithms: Algorithm objects represent learning
machines (e.g. neural networks, kernel methods, deci-
sion trees) or preprocessors (for feature construction,
obe #Tr #Va #Te %[+] Tr/F
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= sparse, or sb = sparse binary), the total number of features Nfeat, the
e training, validation, and test sets, the fraction of examples in the positive
r/F. All problems are two-class classification problems.
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Fig. 1. Distribution of the challenge participant results. We show histograms of the balanced error rate (BER) for the five tasks.
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data normalization or feature selection). They are
constructed from a set of hyper-parameters and have
at least two methods: train and test. The train method
adjusts the parameters of the model. The test method
processes data using a trained model.

Trained models are simply saved and reloaded with the
save/load Matlab commands. This feature is convenient
to verify results and enforce reproducibility.

The Spider (with some CLOP extensions) provides ways
of building more complex ‘‘compound’’ models from the
basic algorithms with two abstractions: chains and ensem-

bles. Chains combine models serially while ensembles
combine them in parallel. The Spider provides several objects
for cross-validation and other model selection methods.

3.2. Learning objects provided for the class

It is easy to be overwhelmed when starting to use a
machine learning package. CLOP is an extremely simplified
package, limited to a few key methods, each having just a
few hyper-parameter values with good default values. This
makes it suitable for teaching a machine learning class.
More advanced students can venture to using other meth-
ods provided in the Spider package, on top of which CLOP
is built.
The CLOP modules correspond to methods having
performed well in the feature selection challenge (Guyon
et al., 2004). There are five classifier objects (we refer-
ence the implementations used): Kernel ridge regression
(Guyon, 2005), naive Bayes (Guyon, 2005), neural net-
works (Bishop, 1996), Random Forest (Leo Breiman,
2001), and Support Vector Machines (Chang and
Lin, 2001). We limited the number of hyperparameters
of the algorithms to simplify model selection. For
instance, the kernel methods use a single kernel:
k(x,x 0) = (coef0 + x Æ x 0)d exp(�ckx � x 0k2) with three
hyperparameters coef0, d, and c. The CLOP modules also
include five preprocessors performing standard normaliza-
tion and feature extraction steps, and five feature selection
methods.

We gave to the students other examples of learning
objects which can be found in the homework instructions
(Anonymous reference, 2005/2006). These include methods
of feature extraction for image data (e.g. Fourier trans-
form, and two-dimensional convolution), and statistical
tests for feature selection. Details are found in a longer
technical report (Guyon, 2006).

We provided the students with baseline methods, which
are compound models combining the basic learning objects
with ‘‘chains’’ and ‘‘ensembles’’ (see Guyon, 2006 for
details). We chose the simplest possible baseline methods,



Table 2
Performance comparison

Dataset Baseline Challenge best Student best

BER0 F 0
feat BER* ± dBER F �feat BER Ffeat Training time (s)

ARCENE 0.1470 0.11 0.1073 ± 0.0117 1.00 0.1048 0.14 3.8
DEXTER 0.0500 0.02 0.0330 ± 0.0040 0.19 0.0325 0.23 1.2
DOROTHEA 0.1237 0.01 0.0854 ± 0.0099 1.00 0.0930 0.01 0.7
GISETTE 0.0180 0.20 0.0126 ± 0.0014 1.00 0.0111 0.20 11.2
GISETTE (pixels) 0.0106 1.00 NA NA 0.0078 1.00 127.9
MADELON 0.0733 0.04 0.0622 ± 0.0057 1.00 0.0622 0.04 7.8

The table shows the balanced error rate and the corresponding fraction of features used for the baseline method, the best challenge entry, and the best
student method. The students earned one point for BER < BER0 or {BER = BER0 and F feat < F 0

feat}. They earned 2 points for BER < BER* + dBER. We
also show the training time of the best student models on a 1.5 GHz Pentium.
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which attain performances approximately in the best tenth
percentile of the challenge entries (Table 2).

4. Performance assessment and class requisites

As part of the class requirements, the student had to
submit results on all five datasets of the challenge and
include their corresponding CLOP models. Performances
were assessed using several metrics:

• BER: The balanced error rate, that is the average of the
error rate of the positive class and the error rate of the
negative class. This metric was used rather than the sim-
ple error rate because some datasets (particularly DORO-

THEA) are unbalanced in class cardinality. Unless
otherwise stated, the BER is computed with test
examples.

• Ffeat: The fraction of features selected.
• Fprobe: The fraction of probes found in the feature set

selected.1 By normalizing Fprobe by F þprobe, the fraction
of probes in the whole feature set, we obtain an estimate
of the False Discovery Rate (FDR). The FDR is indic-
ative of Type I errors (irrelevant features wrongly
selected).

• ZBER: To assess the effectiveness of feature selection, we
can compare a reduced model built with the selected fea-
tures with the full model built using all the features. A
large balanced error rate of the reduced model BER,
compared to BER+ obtained using all the features, is
indicative of Type II errors (false negative, i.e. relevant
features wrongly discarded). To assess the incidence
of Type II errors we use the statistic ZBER =
(BER � BER+)/rD, where rD is the standard deviation
of BER � BER+.2
1 We remind the reader that ‘‘probes’’ are meaningless features
purposely added to the feature set to assess the effectiveness of feature
selection.

2 For small training sets, the benefit of reducing the dimensionality may
outweigh the loss of information by discarding useful features, making
ZBER an imperfect indicator of Type II errors. The BER may actually be
better than BER+, in which case ZBER will be negative.
For each dataset, the students would earn one point if
they obtained a better BER than the provided baseline
method, or a smaller Ffeat for the same BER. They would
earn two points if they matched the BER of the best chal-
lenge entry (within the statistical error bar). The overall
grade also included points for a poster presentation of their
results and for the presentation in class of a research paper
from the book (Guyon et al., 2006). The other performance
metrics (Fprobe and ZBER) are used in our analysis (Section
5), but were not used for grading.
5. Student work

During the curriculum, the datasets were introduced one
at a time to illustrate topics addressed in class, based on
progressive difficulty. A description of the homework
assignments associated with each dataset is provided in
(Guyon, 2006). Briefly: GISETTE (the handwritten digit
dataset) was used to illustrate feature construction. The
student could experiment with transforms such as Fourier
transform and convolution using the original pixel repre-
sentation and create their own feature extraction learning
objects. DEXTER (the text classification dataset) was used
to learn about univariate filter methods and how to
optimize the number of features with statistical tests or
cross-validation. MADELON (the artificial dataset) gave an
opportunity to the students to experiment with multivari-
ate filters such as Relief, or try wrappers or embedded
methods with non-linear multivariate classifiers. ARCENE

(the mass-spectrometry dataset) included two difficulties:
a small training set and heterogeneous data (coming from
three sources). Therefore, it was a good dataset to further
study multivariate feature selection algorithms, and exper-
iment with mixtures of experts or ensemble methods.
DOROTHEA (the drug discovery dataset) is the hardest
because of its 100,000 features for only 800 training exam-
ples, with only ten percent of positive examples. The stu-
dents learned about problems of overfitting and
unbalanced data.

We report the results of all five students who returned
results to get credit for the class. Each student made fewer
than five entries (the limit set by the rules of the challenge).
The best entries are shown in Table 3. The training set and



Table 3
Methods employed by the best student entries

Dataset Code of the methods employed

ARCENE my_svc=svc({‘coef0=2’,‘degree=3’,‘gamma=0’,‘shrinkage=0.1’});
my_model=chain({relief(‘f_max=1400’),normalize,my_svc})

DEXTER my_svc=svc({‘coef0=1’,‘degree=1’,‘gamma=0’,‘shrinkage=0.5’});
my_model=chain({s2n(‘f_max=4500’),normalize,my_svc})

DOROTHEA my_model=chain({TP(‘f_max=15000’),normalize, . . .

relief(‘f_max=700’),naive,bias});

GISETTE my_svc=svc({‘coef0=1’,‘degree=3’,‘gamma=0’,‘shrinkage=1’});
my_model=chain({s2n(‘f_max=1000’), normalize, my_svc})

GISETTE (pixels) my_svc=svc({‘coef0=1’,‘degree=4’,‘gamma=0’,‘shrinkage=0.1’});
my_model=chain({convolve(gauss_ker({‘dim1=5’, ‘dim2=5’})), . . .
normalize,my_svc})

MADELON my_svc=svc({‘coef0=1’,‘degree=0’,‘gamma=0.3’,‘shrinkage=0.3’});
my_model=chain({relief(‘f_max=20’),standardize,my_svc})
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validation set of the challenge were merged for training.
The hyper-parameters were adjusted by cross-validation
(usually 5-fold cross-validation). The final model is trained
on all the available labeled data. As indicated in Table 2,
the training times are modest (of the order of 1–10 s per
model, except for GISETTE when the pixel representation
is used, because of a time consuming preprocessing). Most
students matched the performances of the best challenge
entries (within the statistical error bar) and therefore
earned the maximum number of points (Table 2 and
Fig. 2). Some student entries even exceeded the perfor-
mance of the best challenge entries. We think that the
achievements of the students are remarkable. They
exceeded our expectations. Of course, it can be argued that
they had several advantages over the competitors: knowl-
edge of the application domain, of the nature of the fea-
tures and fraction of probes, and access to test
Arcene Dexter Dorothea Gisette Madelon
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Fig. 2. Result comparison. The student performances matched (within the
statistical error bar) or exceeded the performances of the best challengers,
using comparable or smaller feature set sizes (see Table 2).
performance. However, this does not diminish significantly
their achievement since many other post-challenge entries
were made since the end of the challenge and hardly any
matched or outperformed the best results of the
challengers.3

General observations can be made about the best
models. All of them use simple classifiers linear in their
parameters (naive = naı̈ve Bayes (Guyon, 2005) and
svc = Support Vector Classifier (Boser et al., 1992)). Both
the naı̈ve Bayes and SVC are known to be robust against
overfitting. Feature selection is performed with only three
simple filters: TP, a filter useful for highly unbalanced clas-
ses like DOROTHEA to pre-select ‘‘true positive’’ features
(Weston et al., 2003), s2n, a simple univariate filter, which
ranks features according to the ‘‘signal-to-noise’’ (s2n)
ratio (Golub et al., 1999), and relief a filter which ranks
features according to their separating power ‘‘in the con-
text of other features’’ (Kira and Rendell, 1992). The strat-
egy adopted is to reduce space dimensionality while
retaining as many relevant features as possible, with no
attempt to remove feature redundancy. Additional regular-
ization is obtained by tuning the classifier ‘‘shrinkage’’
hyperparameters.

By analyzing the results of the student work, stronger
conclusions can be drawn about the effectiveness of feature
selection than by analyzing the results of the challenge
itself, because for four datasets out of five the best chal-
lenge entries used 100% of the features. In contrast, the stu-
dent entries use a small subset of features, yet outperform
the best challenge entries or match their performances
within the statistical error bar.
3 We noted that, except in the case of GISETTE, where they were asked to
take advantage of the knowledge of the features to outperform the
challengers, the students did not take advantage of the knowledge of the
nature of the features. Since they did not have access to the test labels, they
could only submit results to the web site to get feed-back on their
performance, which limited the possibility of tuning their method to the
test set.



Table 4
Effectiveness of feature selection

Dataset Full model Reduced model FDR ZBER

F þprobe BER+ Ffeat Fprobe BER

ARCENE 0.30 0.1186 0.14 0.04 0.1048 0.14 �1.09
DEXTER 0.50 0.0410 0.23 0.55 0.0325 1.1 �1.75
DOROTHEA 0.50 0.3094 0.01 0.03 0.0930 0.05 �5.82
GISETTE 0.50 0.0180 0.20 0.00 0.0111 0 �3.49
MADELON 0.96 0.4872 0.04 0.00 0.0622 0 �35.53

The table shows the fraction of probes in the original data F þprobe and the BER of the full model BER+, the fraction of selected features Ffeat, the fraction of
probes in the selected feature sets Fprobe, and the BER of the model built with the reduced feature set BER, the false discovery rate FDR ’ F probe=F þprobe,
and the Z statistic ZBER = (BER � BER+)/rD.
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To further evaluate the impact of feature selection, we
reran the best models without feature selection, keeping
the same hyper-parameters. We summarize the results in
Table 4. In all cases, the reduced model (built with the
selected features) has a smaller test BER than the full
model (built with all the features) and consequently ZBER

is negative: there is no significant loss of information by
discarding useful features and/or the benefit of space
dimensionality reduction outweighs that loss. For the three
last datasets, the reduced model is significantly better than
the full model at the 1% risk level (ZBER < �2.33) and the
false discovery rate (FDR) is zero or near zero. This means
that we have both very few type I and type II errors (few
irrelevant features wrongly selected and few useful features
discarded). At the 5% risk level (ZBER < �1.65), feature
selection yields significant performance improvement for
one more dataset (DEXTER), even though the FDR of the
selected features is very high. This shows that space dimen-
sionality reduction plays an important role in performance
improvement, regardless of the effectiveness of the method
to filter out irrelevant features. For ARCENE, the perfor-
mances of the reduced model and the full model are not sig-
nificantly different. Yet, the feature set is significantly
reduced without performance degradation and the FDR
is relatively low.

Although it is difficult to predict ahead of time which
method will work best on a given dataset, in retrospect,
some justifications can be given. A simple rule-of-thumb
for the choice of a classifier is that its complexity should
be proportional to the ratio Tr/F of number of training
examples over the number of features. If we sort the clas-
sifiers according to that ratio, we obtain: DOROTHEA <
ARCENE < DEXTER < GISETTE < MADELON. Accordingly, it
makes good sense that the naı̈ve Bayes method (the sim-
plest) was used for DOROTHEA, while the non-linear SVM
(the most complex) was used for GISETTE and MADELON.
DEXTER in the middle, uses the linear SVM of middle range
complexity. It easily understood why relief performs
well for MADELON and ARCENE: both datasets have classes
containing multiple clusters. So we need a filter that per-
forms a ‘‘local’’ feature selection. For the same reason,
these two datasets benefit from using a non-linear classifier
(particularly MADELON). For DOROTHEA, the problem of
class imbalance has been addressed by using a special fea-
ture filter (TP) and a special post-processor to adjust the
bias. For a more detailed analysis dataset by dataset, see
(Guyon, 2006).

6. Conclusions and future work

A challenge can be more than a one-time event. It can
become an on-going life benchmark and a teaching tool.
Leaving the website of the NIPS2003 feature selection chal-
lenge open for post-challenge submissions has given to
graduate students and researchers the opportunity to com-
pare their algorithms to well established baseline results.
Since the end of the challenge, the number of entrants
has almost doubled.

In this paper, we have demonstrated that even undergrad-
uate students can get their hands dirty and ‘‘learn machine
learning from examples’’, with a success that exceeded our
expectations. All of them easily outperformed the baseline
methods we provided them and most of them matched the
performances of the best challengers (within the statistical
error bar) or even exceeded them. We hope that this experi-
ence will be followed by similar other attempts. In the mean
time, we make available all of our teaching material, data
and code.

The results obtained mark also a victory of simple meth-
ods. All the models used to match or outperform the best
challenge entries use a combination of simple normaliza-
tion, feature selection filters (signal-to-noise ratio, Relief,
or fraction of true positive), and a naı̈ve Bayes or a support
vector machine classifier. There was no need to use ensem-
ble methods or transduction. However, univariate feature
selection and linear classifiers did not always suffice.

With this study, we could reach more conclusive results
regarding the effectiveness of feature selection than by ana-
lyzing the results of the challenge. The best challenge entries
significantly outperformed other entries without using fea-
ture selection. In contrast, the student entries used a reduced
feature set, while matching or outperforming the perfor-
mance of the best challenge entries. For three datasets the
reduced model using a small fraction of the original feature
set significantly outperformed the full model and the false
discovery rate approached zero.
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This paper by no means marks an end point to the prob-
lem of feature selection or even to solving the tasks of the
NIPS2003 feature selection challenge. Our explorations
indicate that there is still much room for improvement.
In particular, since we have released the identity of the fea-
tures, it is now possible to introduce domain knowledge in
the feature construction process. To a limited extent we
have seen that this strategy show promises on the GISETTE

datasets: a simple smoothing of the pixel image allowed us
to boost performances.
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